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20. Abstract 

Hearsay-ll (HSIl), a large artificial intelligence system for understanding 
speech, developed at Carnegie-Mellon University (CMU).  This is an important 
question because many of these problems, such as efficiency, compensating for 
error, controlling directionality, augmenting knowledge, and analyzing perfor- 
mance, have become limiting factors for performance. 

To obtain an answer to this question, an actual system (call HSP, for 
"HearSay-Product ion system") was implemented on C.mmp, the CMU mul t i-mini procfts^c-i 
with a portion of the HSIl speech knowledge translated into productions.  An 
early decision was made to maintain close comparability of HSP with HSIl rather 
than explore the more general question of how to best understand speech with a 
PS.  Two knowledge-source (KS) programs from a complete HSIl configuration were 
completely translated and run in HSP, and these provide a basis for some 
detailed comparisons between  HSIl and HSP.  Ten other KSs v/ere translated, and 
their static structure provides supporting evidence. 

The HSP architecture was heavily influenced by HSIl, itself similar to a 
PSA, and by a general PSA design philosophy manifested at CMU in systems such 
as PSG, PSNLST and  OPS. HSP has several novel features when compared with 
these three relates PSAs, and thus makes a minor contribution in the area of 
PSA des in i. 

'.he main results of the thesis are presented as a list of 17 assertions 
organized into five categories:  Representation and Architecture, Space 
Efficiency, Time Efficiency, Parallelism, and the Small Address Problem, The 
HSP architecture is found to be adequate for representing the HSIl speech 
knowledge, even though HSP is simple compared to other PSAs. 

Space and time efficiency are another matter.  There is a moderate space 
penalty for representing declarative HSIl knowledge ^s HSP productions, which 
is cause for concern since HSIl contains many large declarative knowledge 
structures.  Even more serious is the substantial space inefficiency of the 
global HSP working memory, since it must be used in place of large, highly 
optimized local working memories typically used by HSIl KSs. 

HSPs lack of local working memory results also in a large loss of time 
efficiency because of heavier use of data-directed control and greater creation/ 
read/write costs in its global Working Memory.  In the two-KS configuration 
this loss is a factor somewhere in the range 6 to 36, but projecting to a full 
KS configuration yields a much larger factor of 100 to 3000 since many of the 
KSs to be added make heavy use of local working memory and control (in their 
HS I I form). 

Some of the time efficiency handicap is made up through increased 
para 1 lei ism of HSP over HSII . A source of para 1 lei ism not exploited by HSIl, 
called intra-KS parallei ism, results from HSP's sma1ler knowledge unit size. 
We estimate conservatively a half order of magnitude increase in parallelism 
for a full KS configuration. It could be much greater than that if HSP,C 

less powerful synchronization mechanisms turn out to be adequate with a rull 
complement of KSs. 

Finally, HSP is found to aid solution of the Small Address Problem, as it 
exists on C.mmp, by making it easy to do overldying of both long-term 
knowledge and working memory. 

The thesis concludes with brief discussion of 9 important questions 
which have emerged from the current study -- questions which must be 
answered to complete the evaluation of a PSA for HSIl. 

UNCLASSIFIED 
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Abstract 

A prime candidate organization for large, Knowledge-rich systems is that of a 
production system (PS). PSs are rule-based architectures that have been u^'i 
successfully for tasks ranging from models of human behavior to large application systems 
in chemistry and medicine, to classical artificial intelligence programs. 

The question studied by this thesis is whether a PS architecture (PSA) helps or hinders 
with respect to implementation problems encountered by Hearsay-II (HSII), a large artificial 
intelligence system for understanding speech, developed at Carnegie-Mellon University 
(CMU). This is an important question because many of these problems, such as efficiency, 
compensating for error, controlling directionality, augmenting Knowledge, and analyzing 
performance, have become limiting factors for performance. 

To obtain an answer to this question, an actual system (called HSP, for "HearSay- 
Production system") was implemented on C.mmp, the CMU multi-miniprocessor, with a 
portion of the HSII speech Knowledge translated into productions. An early decision was 
made to maintain close comparability of HSP with HSII rather than explore the more 
general question of how to best understand speech with a PS. Two Knowledge-source 
(KS) programs from a complete HSII configuration were completely translated and run in 
HSP, and these provide a basis for some detailed comparisons between HSII and HSP. Ten 
other KSs were translated, and their static structure provides supporting evidence. 

The HSP architecture was heavily influenced by HSII, itself similar to a PSA, and by a 
general PSA design philosophy manifested at CMU in systems such as PSG, PSNLST and 
OPS. HSP has several novel features when compared with these three related PSAs, and 
thus maKes a minor contribution in the area of PSA design. 

The main results of the thesis are presented as a list of 17 assertions organized into 
five categories: Representation and Architectura, Space Efficiency, Time Efficiency, 
Parallelism, and the Small Address Problem. The HSP architecture is found to be adequate 
for representing the HSII speech Knowledge, even »hough HSP is simple compared to other 

PSAs. 

Space and time efficiency are another matter. There is a moderate space penalty for 
representing declarative HSII Knowledge as HSP productions, which is cause for concern 
since HSII contains many large declarative Knowledge structures. Even more serious is the 
substantial space inefficiency of the global HSP worKing memory, since it must be used in 
place of large, highly optimized local worKing memories typically used by HSII KSs. 

HSP's lack of local worKing memory results also in a large loss of time efficiency 
because of heavier use of data-directed control and greater creation/read/write costs in 
its global WorKing Memory. In the two-KS CO'- '"urafion this loss is a factor somewhere in 
the range 6 to 36, but projecting to a full KS configuration yields a much larger factor of 
100 to 3000 since many of the KSs to be added matMJ h«ftvy use of local working memory 
and control (in their HSII form). 

Some of the time efficiency handicap is made up through increased parallelrtm of HSP 

/ 



over HSII. A source of parallelism not exploited by HSII, called intra-KS parallelism, results 
from HSP's smaller Knowledge unit size. We estimate conservatively a half order of 
magnitude increase in parallelism for a full KS configuration. It could be much greater than 
that if HSP's less powerful synchronization mechanisms turn out to be adequate with a full 

complement of KSs. 

Finally, HSP is found to aid solution of the Small Address Problem, as it exists on 
C.mmp, by making it easy to do overlaying of both long-term knowledge and working 

memory. 

The thesis concludes with brief discussion of 9 important questions which have 
emerged from the current study — questions which must be answered to complete the 

evaluation of a PSA for HSIk 
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Chapter   1 

Introduction 

A prime candidate organization for large knowledge-rich systems is that of a 
production system (PS) [Newell, 1973; Davis and King, 197-;; Waterman and Hayes-Roth, 
19731. PSs are rule-based architectures that have been used successfully for tasks 
ranging from models of human behavior [Newell and Simon, .972], to large application 
systems in chemistry [Feigenbaum, Buchanan and Lederberg, 1971] and medicine 
[Shortliffe, 1974], to general artificial intelligence programming tasks [Rychener, 1976]. 
The uniform rule structure of knowledge in PSs makes them particularly useful for tasks 
requiring iterative upgrading of knowledge content. 

The question studied by this thesis is whether a PS architecture (PSA) helps or hinders 
with respect to problems encountered by Hearsay-II (HSII), a large artificial intellrgence 
system for understanding speech, developed at Carnegie-K'sllon University [CMU Speech 
Group, 1977; Lesser and Erman, 1977; Erman and Lesser, 1975; Lesser, Fennell, Erman and 
Reddy, 1975]. This is an important question because many of these problems, such as 
efficiency, compensating for error, controlling directionality, augmenting knowledge, and 
analyzing performance, have become limiting factors. Alleviation of one or more of these 
might clear the way for significantly better performance. 

To obtain an answer to this question, an actual system (called HSP, for "HearSay- 
ProHuction system") was implemented on C.mmp, the CMU multi-miriprocessor [Wulf and 
Bell, 1972], with a portion of the HSII speech knowledge translated into productions. Two 
knowledge-source (KS) programs from a full HSII configuration were completely translated 
and run in HSP, and these provide a basis for some detailed comparisons between HSII and 
HSP. Ten other KSs were translated, but with some simplifications and omissions, and were 
never completely debugged and run. However, their static structure does provide 
evidence for representation issues. 

One promising remedy for the slowness of a system like HSII is the use of parallel 
machine architectures, and so HSP was designed with parallelism in mind. Data on 
processor utilization and overhead were obtained for HSP runs of the two-KS 
configuration with up to ten processors on C.mmp, and the results compared with a 
multiprocessor simulation of HSII [Fennell and Lesser, 1977]. In addition, an HSP simulator 
was burlt to work from timings collected by HSP in uniprocess mode and predict processor 
utilization with larger numbers of processors. The simulator was validated by comparing 
with real HSP multiprocessor runs. 

This f'iesis also aims to make contributions in the area of PSA design, since HSP has 

[1]   Ofhor  example»  are  [Newell,   1973, KUhr,   J973i Voun»,   197a Mor»n,   1973; F»rl»y,   1974; WtUrmin,   1974; 

Brood», 1975J. c     [Ryeh»n»r, 1976) for • bri»» diteuiaion of BMH. 
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several   novel  features  related  to multiprocessing and the use of  multiple, independent 
sources of knowledge. 

An early choice point in the research was whether to make HSP mimic HSII, or to break 
free from HSII entirely. The determination to maintain comparability of HSP with HSII led to 
the former, yielding an imitative style of study. This precluded many directions that might 
have been followed if the focus had been on how best to understand speech with a PS, for 
example, studies of knowledge augmentation or directionality/ A result of this decision is 
that HSP fared badly in the comparison, though on the positive side we have shed light on 
representation and efficiency issues in both HSP and HSII. 

From the beginning it was recognized that an effort of the scope of this thesis had a 
large number of associated risks: 

This was a one-man effort, whereas HSII is the product of several tens of man- 
years. Large amounts of HSII kernel and knowledge-source code had to be 
penetrated and thoroughly understood to accomplish the translation. 

HSII was undergoing rapid development during the period of the thesis work, so 
that the foundation for translation was continually crumbling away. A good deal of 
effort was wasted in trying to track the moving target, and in the end this was 
given up as futile. Thus of the 12 KSs translated for HSP, only 5 still existed in the 
final HSII version of September 1976. 

The risk which turned out to be most damaging was the immaturity of the 
underlying hardware and software: C.mmp [Wulf and Be!!, 1972] and its operating 
system Hyd-a [Wulf et al., 197^]. These were still being activeiy developed, and 
the steady influx of new hardware and software took a large toll (even larger than 
anticipated) in system crashes and incompatibilities. 

Even in the face of such risks, it was felt the problem had sufficient interest to be 
worth pursuing, with an understanding that the final results would inevitably focus on a 
small number of the total set of issues. The remainder of the introduction summarizes the 
major components of this study. First comes a characterization of the speech 
understanding task, followed by overviews of the two architectures: PS and HSII. The final 
component includes the underlying C.mrrp hardware, operating system, and implementation 

system used by HSP. 

(2)     For (his reason, it i« improper to identify HSP as • "PS for ipeech undentendini". 
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1.1    The Speech Understanding Task 

The origin of much of the current activity in building speech-understanding systems 
dates back to the spring of 1970, when a study group was set up by the Advance 
Research Projects Agency of the Department of Defense. Its task was to consider the 
feasibility of developing a system that would understand human speech in the context of 
performing some task. The final report of that study group [Newell et al., 1973] concluded 
that a five-year development program to produce a research prototype system would 
have a reasonable chance of success, and a big payoff for the technical community at 
large. The term "Speech Understanding System" (SUS) was coined to distinguish the goal 
of understanding the intent of an utterance in the framework of some task from the 
(harder) goal of "recognition" of the utterance as consisting of particular words, phonemes, 
etc. The report laid down a set of specifications for thr system along 19 dimensions which 
defined fairly precisely what the goals of the effort should be, and how success or failure 
could be measured. 

The results of the five-year program are now in. It was successful not only in 
achieving the specific goals, but also in producing a large collection of scientific and 
technical advances [Medress et al., 1977; CMU Speech Group, 1977; Walker, 1976; Woods 
et al., 1976; Bernstein, 1976]. The system which succeeded (on 13 August 1976) is called 
HARPY [Lowerre, 1976], and was developed at CMU as an alternative to HSII (the system 
studied by this thesis). HARPY's performance was 917. sentence accuracy (957, semantic 
accuracy) on a 1011-word vocabulary with 5 speakers. HSII came very close to the goals 
with about 707. sentence accuracy (917. semantic accuracy) for a single speaker. 

Several aspects of the speech understanding task make it stand out from many other 
artificial intelligence tasks: 

The rich structure of hierarchical information levels (phonetic, syllabic, lexical, etc.) 
and knowledge sources. This I. ings to the fore the interesting problems of 
knowledge interaction (conflict) and directionality control. 

The high degree of formalization of each level, with lexicons of basic entities and 
rules relating entities (both within and between levels). A consequence of this is 
that much existing speech knowledge is conveniently representable as simple 
tables (e.g., probability matrices and dictionaries) or networks (e.g., grammars and 
state transition networks). 

The large direct recognition component of speech understanding; i.e., little high- 

■'.v^****' 
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level serial reasoning. 

The ubiquity of error. Errors begin with the speech input itself; i.e., the variability 
due to noise and speaker. Imperfect theory leads to additional errors being 
introduced by inaccurate or incomplete knowledge-sources. As these errors 
propagate through the various hierarchical levels, they are compounded. The 
presence of error must be compensated by maintaining everywhere several 
plausible alternatives, and this results in turn in a seriour. combinatorial Search 

problenr 

The Implementation Problems 

The above aspects, and others shared with other artificial intelligence tasks, give rise 
to characteristic implementation problems that must be attended to by builders of SUSs. 
These are listed below in Figure l.l;4 additional qualification or listing of significant 
subproblems is included where appropriate. Note th«1 problem 4 is more specific than the 
others. It was included because of its particular importance for the C.mmp architecture 

which underlies HSP. 

13] This is indica<ed by (he f»e« «M human» undersUnd »peach in roal lim». Information proc««»inj model» of human 
problem solving (Newell and Simon, 1972] indicate a baaic recognize-act cycle time of 20-100 milliseconds for 
»ho human serial processor, or only about 10-50 cycle» per second. Thus, sue!) a processor could no» 
understand speech unless a great deal of the task were accomplished by direct recognition. However, human» 
may have some speeiel pipe-lining or other similar mechanism» to provide more effective parslleliem for »peech 

underetanding. 

[A]   An important »ourc» for »he construction of Ihi» problem li»t wa» the paper by Moore end Newell [1974] on 

the Merlin system, which contains a list of design features for the creation of an intelligent system. 

V. 
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1. Adoquacy of representation 
Not mere possibility, but some degree of facility 

2. Space efficiency 
Of both long-term and working memory 

3. Time efficiency 
Real-time input 
Searching in combinatorial spaces 
Exploiting parallelism 

A.   Limited Address Space 
Large systems on small-address-space machines 
Also Known as the Small Address Problem 

5. Error 
In input 
In knowiedge-sources 

6. Directionality 
Integrating the activity of multiple idiosyncratic knowledge-sources 

7. AuRmentation 
Knowledge interaction problem 

8. Testing 

9. DebuRging    • 

10. Performance analysis 

Figure 1.1   Characteristic implementation problems for Speech Understanding Systems 
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1.2   The Promise of Production Systems 

A production system architecture (PSA), in the sense of this thesis, consists of a set of 
rules, called productions, stored in a production memory (PM), and a working memory (WM) 
which holds symbolic structures operated on by the productions. A production consists of 
a condition part which tests the current state of WM, and an action part which specifies 
additions/modifications/deletions to WM to take place in case the condition part is true. 
The basic operating cycle of a PS is a "recognize-ad" cycle: i.e., recognize which 
production conditions are true of the current WM, then execute the corresponding 
production actions. Since each cycle makes some change to the WM state (which changes 
the sot of productions that are true), iteration of the cycle produces (potentially, at least) 
an interesting stream of behavior. 

PSAs at large show a great deal of diversify. The strain to which HSP belongs has a 
lineage beginning with studies of human problem solving [Newell and Simon, 1972] and a 
PSA :alled PSG [Newell and McDermott, 1975], and extending to the more recent 
architectures of PSNLST [Rychener, 1976] and OPS [Forgy and McDermott, 1977], A 
variant strain with roots in performance-oriented, knowledge-based expert systems 
(DENDRAL [Feigenbaum, Buchanan and Lederberg, 1971] and MYCIN [Shortliffe, 1974]) 
embodies a major architectural difference in the use of rules. These systems treat rules 
as declarative knowledge structures to be interpreted by a simple, inflexible goal-directed 

control mechanism;" i.e., the production rules are only a piece of the total system (though 
the most important piece). On the other hand, PSG-like systems have no declarative long- 
term knowledge; all knowledge is encoded as (procedural) productions, which combine 
knowledge with how it is to be used (control information).7 The tradeoff between the two 
views is essentially this: PSG-like systems have more flexibility in representing control 
information (i.e., knowledge interactions), but at the cost of greater difficulties than MYCIN- 
like systems in augmentation and permitting multiple use of knowledge. 

How a PSA Faces the Implementation Problems 

The substantial promise that PSAs show for large artificial intelligence systems 
(specifically, speech understanding systems) can be made concrete by examining each of 
the problems introduced above. Unfortunately, as we shall see below, a PSA does not 
necessarily offer promise for all the problems; some may be exacerbated. 

Adequacy    o[    representation    —    The    simplicity    of    PSA    data    and    control 
representation   is   grounds   for   some   doubt   about   adequacy.    Medium-scale   PS 

[5]   This is analogous to fho "f«Uh-ax»cuU" cycl« for tequanlial machines, 

[6]    Rpcont work by Davis [1976, Chapter 7) ha« shown how 1o incorporate mela-rule« into MYCIN for »trateji»! 

of knowledge use. This solution is distinctly different from the single-level rules of PSG-like systems. 

[7]   Winograd's (1975) discussion of declarative vs. procedural representations is relevant here. 
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efforts [Rychener, 1976] have met with success, but we must wait for evidence 
from large, complex systems; e.g., the Instructable Production System [Rychener 
and Newell. 1978]. 

Space efficiency -- The space efficiency of PSs is not yet clear. Rychener [1975] 
observed that his PSs seem to be less space efficient (a factor of three in one 
case) than the equivalent versions in standard artificial inteliigencp languages. As 
will be seen in Chapter 3, the large, simple knowledge tables of the speech task 
cause space problems for HSP. 

Time efficiency — The recognize-act cycle, with its inherently large ratio of 
recognition to action, matches well with the large recognition component of the 
speech task. However, the theoretically limitless recognition power of a PSA is 
just a dream on current machine architectures. This includes parallel architectures, 
since only tens of processors are typically available, while thousands may be 
heeded. 

Limited Address Space -- The decomposition of both long and short-term memory 
into structurally independent units (productions and WM elements, respectively) 
offers the possibility of overlaying these units in the address space. However, 
current mechanisms for efficient condition evaluation require additional large data 
structures which may be more difficult to overlay. 

Error -- The recognition structure of PSs allows those errors which are detectable 
by direct recognition of the WM state (hopefully the majority) to be continuously 
checked, and (theoretically) at little cost to the main processing. The response to 
an error stale could be the application of some specialized knowledge to correct 
the error and thus effect automatic recovery. If the PSA is one in which new 
information augments the WM rather than replacing information already there, this 
provides a sort of automatic history mechanism. Such a mechanism could be useful 
for reconstructing the reasons for an error. 

Directionality — Since PSs operate on a basis of immediate action through 
recognition, they will always attempt to apply every bit of knowledge which bears 
(directly) on the current situation. Thus the main problem for directionality 
becomes one of restricting potential behavior.8 An obvious way to resolve a 
conflict among a set of productions is to make their conditions more discriminating 
by adding condition elements. These elements either lest more detail of the 
natural WM state or lest for special control signals in WM. 

Augmentation — The simple model of augmentation by additive growth is perhaps 
the most seductive feature of PSs, although a deceptive one. There remains the 
problem (as yet poorly understood) of how to achieve coordinated action between 
original and added productions. 

18)   AHhough in cases whsre the desirsd direction of behewiof it Known in edvence, »here is cerUinly no problem in 

■imply programmint the PS to behave appropriately. , 
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Testinp, -- There is a potential for rapid setup of test situations within a PS simply 
because there is no long-term processing state contained anywhere except in the 
WM. Thus many tests can be conducted by initializing WM to contain elements 
which will induce the behavior to be tested, and then just starting the PS. This is 
easy provided a modest number of elements suffices. 

Debugging -- Monitors on the WM state can be written as normal productions and 
intermixed freely with task productions. Secondly, since the basic operation of the 
PS is interpretive, the control points already exist for adding facilities such as 
tracing and breakpoint. Finally, productions can easily be disabled temporarily to 
eliminate extraneous behavior when zeroing in on a problem. 

Performance analysis — The uniform structure of small, relatively independent 
productions, each with a definite function, seems to provide a fertile field for 
performance analysis. Ablation studies (i.e., observing the effect of selective 
removal of productions) should be possible in great variety because of the large 
number of productions. It should also be possible to trace the contributions of 
knowledge in great detail at the level of individual productions. Finally, an analysis 
of variance study (with individual productions or groups thereof taken as the 
factors in the analysis) might be useful in helping determine how productions 
interact, in both useful and detrimental ways. 

i 
Thc uverall picture painted above is a rosy one indeed. A note of realism is in order: it 

is unlikely that all, or even most, of the positive promises will come to fruition. Some of 
them are highly speculative. As each aspect is better understood, there will be additional 
qualifications. And, as always in complex systems, problems which we think have been 
solved have often only moved to a different place. Thus, the above list must be 
considered a provisional one, serving only to guide the next wave of research. 

1.3   Overview of the HSII Architecture 

Hearsay-II (HSII) is a system organization for the speech understanding task designed 
to coordinate the contributions of diverse, essentially independent sources of knowledge 
which operate at the different hierarchical levels of speech knowledge. 

The essential device for communication among knowledge sources (KSs) is a large 
shared Working memory called the Blackboard (BB), which ail KSs inspect and modify. The 
BQ is a medium for growing linked networks of hypotheses (hyps) about what elements 
exist at the various levels and for various time intervals of the utterance (e.g., words, 
syllables, etc.). The BB levels form a hierarchy based on the lime grain of the 
hypothesized elements at each level. Elements at the top level span the entire utterance, 
while the bottommost level contains elements corresponding to small segments of the 
utterance. A crucial feature of the BB is its capacity for representing and interrelating 
alternative hypotheses at all levels and time regions. 
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A uniform hyp structure is used at all levels of the BB, except for the fact that a 
different lexicon of elements exists at each level. A hyp is an attribute-value structure 
(the attributes are called fields) with entries for: the lexicon of the element, the element's 
identity, the element begin and end time within the utterance, links from supporting hyps 
at the next lower level, links to supported hyps at the next higher level, a current 
estimate of validity, and several other items. It is possible to particularize the hyp 
structure at any level by dynamically adding new fields and associated values which are 
relevant to KSs operating at that level; and this is an important feature that gets much 
usage. In addition to hyps, the BB contains links which consist of: a reference to the 
lower (supporting) hyp, a reference to the upper (supported) hyp, and an implication value 

indicating the strength of the support. 

Upward growth in the BB normally consists of linking a hyp or a time-adjacent 
sequence of hyps at some level to a new hyp at the next higher level; this is essentially a 
recognition process, and the lower hyps are said to be supporting the upper one. 
Downward growth in the BB normally consists of hypothesizing and linking to a hyp or 
sequence of hyps at the next lower level; this is essentially a prediction process. Also, 
sideways growth may occur in the form of predictions of hyps in the context (right or left 

in utterance-time) of already existing hyps. 

All the static speech knowledge in the system is encoded as procedural units (the KSs) 
written in SAIL, a compiler based, higher-level algebraic language [Reiser, 1976]. The KSs 
are structured to contribute their knowledge by creating and modilying BB hyps and links 
in response to relevant changes by other KSs (i.e., in a data-directed fashion). KSs are 
typically experts about the relationship between units at two adjacent levels in the BB, 

and work only locally in that area.9 Every KS can be completely independent of all others 
except those that deal with the same BB levels it does, and even then communication is 

1 fi 
restricted to occur only through the structures in the BB. 

An initial portion of the condition for KS action is encoded in a separate procedural 
unit called a Precondition (PRE). Every KS has a corresponding PRE, although a single PRE 
commonly acts for more than one KS. A PRE is executed (to evaluate its condition) 
whenever a BB change occurs which belongs to a class which the PRE is interested in. If 
the PRE finds what it is iooking for in the B3 (evaluates to True), it instantiates the 
appropriate KSs to act on that local area of the BB. The main reason for having PREs 
separate from the KSs is to obtain enough preliminary context information about KS 
instantiations to allow their desirability to be estimated and used by the scheduler. 
Another reason for having PREs is that KS instantiation overhead is avoided when the PRE 
evaluates to False. (PREs remain in existence throughout an entire run, and thus there is 

little overhead in invoking one.) 

The global behavior of the HSII system can be viewed as a heuristic search through 

[9]   How»v«r «om» KS» ini»y d»»l with non-»d)»c»nl Itv.lt, and Ihit fr»«doin if • criticil »»p^c» of «h« »rehiUetur». 

[10]   Thti is lh» philosophy. Th« r**l iy»l»m violatai Ihn in a nombar of placai, uaually for »fficwncy raaaons. 



Page 10 Introduction Chapter 1 

the space of partial recognition networks being built up in the BB; these structures are in 
the form of hyps with validities, and validity-propagating links between them. The overall 
goal is to find a sufficiently valid network which spans all levols of the BB and the entire 
utterance time. The KSs expand the networks both bottom-up and top-down until they 
can be joined. Validities are periodically updated for the growing partial networks, and 
the validities also provide heuristics for the network-growing activity by indicating how 
and where the growing should proceed. 

How HSII Faces the Implementation Problems 

The HSII architecture was of course designed with the system problems of Figure 1.1 
in mind, and hence has many characteristics intended to deal with the problems. The 
following list describes the most important of these characteristics: 

Adi iiiacy of representation -- HSII plays it safe on adequacy for long-term 
knowledge by using SAIL, a general higher-level language, so that there is very 
little constraint on how knowledge is encoded in the KSs. As for working memory, 
SAIL data structures are adequate for KS-local use, and for global use the hyps 
and links of the BB can have arbitrary attribute-value structures appended. 

Time/space efficiency ~ HSII KSs are individually "tailored" for efficiency, with 
specialized local data structures which save space and access time compared to 
their global (SB) equivalents. These local structures also avoid the substantial 
overheads of data-directed invocation which go with global BB use. Furthermore, 
the HSII architecture allows parallel execution of KS instantiations along three 
dimensions: different KSs, different utterance-time intervals, and alternative 
hypotheses. A parallel machine simulation study made within HSII [Fennell, 1975; 
Fennell and Lesser, 1977]) yielded an effective parallelism measure between 4 and 
6, based on an earlier version of HSII which had a limited set of KSs. With a richer 
set of KSs and/or a reduction (or elimination) of synchronization overheads, the 
effective parallelism could be expected to increase dramatically. 

Limited address space -- The independence of KS modules permits them to be 
overlayed in address space (in this case swapped in from secondary memory). 

Error -- The main way in which HSII handles error is by tolerating it — by making 
the knowledge ignore minor mismatches and inconsistencies (as for time adjacency 
tests), and by having alternative sourrps of knowledge. A crucial part of this is 
the   representation  in   the   BB  of Mve  (conflicting)   hypotheses   and   their 
interrelationships. 

Directionality — A mechanism with iSII kernel schedules potential  PRE and 
KS instantiations according to their "desirability", which is a function of the set of 
BB elements the KS or PRE is likely to manipulate, and of the current global state 
of the BB. In addition, individual KSs commonly use rating thresholds to limit their 
activity. 

AuRmentation — Normal program modif cation to the SAIL module for a KS is the 
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( 
standard means of knowledge augmentation. However, most KSs are table or rule- 
driven and thus can be augmented in certain ways by simply adding table entries 
or rules. If is possible (and easy) to augment by integrating a new KS into the 
system (though implementing the KS itself may be hard). This is not often done, 
but has been instrumental in several major iterations of the system. 

Testing -- Testing can be done reasonably effectively by operating with a minimal 
system configuration (i.e., the KS to be tested in a minimal environment), and by 
including in the KS code some special facilities for controlling test runs. 

Debugfiing — HSII has its own interactive command language and debugging tools, 
taking up a third of the system (exclusive of KSs), and representing a significant 
development effort in the early years of the project. These tools span all levels of 
system siructure, from inner details to global interactions of KSs. 

Performance analysis -- Much analysis is done on individual KSs running in minimal 
configurations. (The independence of KSs is what allows these configurations to 
work.) Causality analysis [Newell, 1975] (i.e., looking at which KSs make which 
changes, and why) carries most of the burden of performance analysis; the display 
facilities to support this require 117. of the system size. Ablation studies [Newell, 
1975] are almost impossible in practice at the level of whole KSs due to excessive 
leanness of knowledge in the system (i.e., the existing KSs barely span all levels of 
the BB). However, individual KSs were coded to allow certain subparts to be 
switched on and off for evaluation purposes. 

To summarize, HSII has devised means of dealing with these problems — its success 
provides an independent demonstration of that. But the problems have not been 
completely solved, and many of them are limiting factors in attempts to improve 

performance. 

1.4   The Systems Underlying HSP 

All three components of the underlying system used to implement HSP (the C.mmp 
hardware, the Hydra operating system, and the L* implementation system) are unusual. 
Though they did have a strong impact on the HSP implementation effort itself, their effect 
for the most part did not carry through to the HSP architecture. If fact, HSP purposely 
avoids using operating system facilities wherever possible so that their effect need not be 
factored out of the data. Thus, no description of Hydra is necessary here. Interested 
readers may consult [Wulf et al., 1974]. 

The C.mmp hardware [Wulf and Bell, 1972] consists of 16 slightly modified PDP11 
processors (currently 11 PDPll/^Os and 5 PDPll/20s) connected to 16 primary memory 
modules via a 16 x 16 crosspoint switch, which allows each processor to access all the 
memory with only  minor switch delay.   Each processor has a set of /elocalion registers 

'■.r*tfm 
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which map addresses at the processor to physical memory addresses. This hardware 
architecture does have a significant effect on HSP in at least two ways. First, and most 
obvious, is the potential for up to 16-way parallelism in program execution. HSP was 
designed with this potential fully in mind, ?nd Chapter 5 reports the results on HSP's use 
of parallelism. A second effect is the uncomfortably small 16-bll address space of the 
processors, which provides a movable window on the large primary memory (about a 
million words). HSP incurred very large development costs, and somewhat smaller runtime 
costs, in dealing with liiis so-called Small Address Problem. Chapter 6 presents the details 

of this. 

The principal impact of L* [Newell, McCracken and Robertson, 1977] on HSP is in 
efficiency, both of time and space. The central programming language of L* is interpretive, 
and although translation to machine code is possible, HSP was left entirely interpretive. 
Inefficiency of space comes from the encoding of data structures as L* list structures. 
These effects must be factored out when time and space comparisons are made with HSII. 
The substantial benefits of L* came during HSP development: flexibility to allow rapid 
iteration and experimentation, plus an overlay facility to help with the small address 
problem. 

1.5   Organization of the Thesis 

The body of the thesis has the following organization: Chapter 2 introduces the HSP 
architecture and contrasts it with several related PSAs developed at CMU. The 
intermediate chapters (3 through 6) deal with the rain results of the thesis, covering 
representation (Chapter 3), time efficiency (Chapter M), parallelism (Chapter 5), and the 
small address problem (Chapter 6). The conclusion (Chapter 7) presents a complete 
recapitulation of the results, structured as a list of assertions followed by a list of 
important unanswered questions. The intermediate chapters contain no significant 
conclusions that are not reflected in Chapter 7. They do contain background and details of 
how the evidence was developed. No separate summaries are included in intermediate 
chapters; the conclusion chapter serves that purpose since its organization closely follows 
the division of the intermediate chapters. 

Chapters 1 and 7 form a nearly self-contained unit, so that a useful strategy for 
reading the thesis is to concentrate on those two, and merely skim the others for 
background and a flavor of the details. 

For tlie sake of completeness, detailed specifications of the HSP architecture appear in 
Appendix A. This will not be relevant to the general reader. Potentially more valuable is 
Appendix B, which contains annotated sample HSP productions. These can be referred to 
for a quick overall impression of HSP. 
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Chapter  2 

The HSP  Architecture 

There were two major driving forces behind the design of the architecture for the HSP 
system. The first was the nature of the speech !ask itself and the model provided by the 
HSII architecturGv which is similar in many ways to a PSA [Fennel!, 1975]. The second was 
a general PSA design philosophy, manifested in systems developed at CMU such as PSG 
[Newell. 1972; Newell and McDermott, 1975], PSNLST [Rychener, 1976] and OPS [Forgy 
and McDermott, 1977].1 These three architectures represent a historical progression in 
PSA development at CMU (PSG: 1971, PSNLST: 1974, OPS: 1976); HSP is a contemporary of 
OPS. Comparisons between HSP and other PSAs will be restricted for the most part to 
just those three systems; the close kinship of the systems makes the comparisons sharper, 
and will not take us too far afield. 

There is one other related PSA which should be mentioned: the one used for the SASS 
module in HSII [Mosfow and Hayes-Roth, 1978]. Its productions use condition and action 
primitives specialized to its task of syntactic and semantic recognition (e.g., predicates 
such as ADJACENT, and actions such as CONCATENATE). They are at a grosser level of 
representation than HSP and its three kindred PSAs; typical actions involve SAIL 
procedures oh the order of a hundred statements, rather than primitive modifications to a 
working memory. Also, the productions do not encode high-level control knowledge, that 
being the domain of the HSII focussing mechanism. Efficient evaluation of the productior.s 
is obtained with an Automatically Compilable Recognition Network (ACORN) [Hayes-Roth 
and Mostow, 19"5]. The ACORN reduces redundancy of condition evaluation in much the 
same way as the mechanisms in OPS [Forgy, 1977]. 

"''his chapter has a double purpose: to briefly introduce the HSP architecture, and to 
compare it with PSG,3 PSNLST and OPS. The features for comparison were chosen 
because of their importance in the overall shaping of HSP, or because they strongly 
dislinguish HSP from the comparison systems. Figure 2.1 summarizes the comparisons. 
The remainder of this chapter elaborates on these, and in so doing also introduces the 
most important features of the HSP architecture. For more details on the architecture, 
consult the detailed HSP specifications in Appendix A, or the annotated productions in 
Appendix B. 

[1] PSG was developed by Newell principally for building »nd (esling model« of human cojnifion; PSNLST was 

developed by Rychener for a study of lh» use of a PSA for a set of classic arfifieial inUlligenca Usks; OPS 

was developed for »he Inslruefable PS project (Rychener and Newell, 1978] by Forgy, McOermoH, Newell and 

Rychener. 

[2]    Wider-ranging PS comparisons can be found in (Davis and King, 1975]. 

(3] PSG eclually represents a large family of of PSAs sines many key features are parameterired We assume here 

the default ssttinfs. 

HPi 
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Production Memory 
Add productions dynamically 

WorkinR Memory 
Simple list structure for elements 
Arbitrary nesting 
Explicit WM element references 

Conditions 
Explicit condition on change 
Arbitrary predicates 
Match arbitrary WM element subpart 
Disjunctions 
Negated conjunctions 
Bind variable to whole WM element 

PSG PSNLST OPS HSP 

Yes Yes Yes No 

Yes Yes Yes No 
Yes No Yes No 
No No No Yes 

No No No Yes 
No Yes Yes No 
No No No Yes 
Yes Yes Yes No 
No Yes Yes No 
No No Yes Yes 

Actions 
Modify WM element subfields 

Control 
Conflict resolution 
Fire multiple productions per cycle 
Fire multiple instantiations 
Exploit parallelism 
Special case inhibition 

Yes No No Yes 

Yes Yes Yes . No 
No No No Yes 
No Yes Yes Yes 
No No Yes Yes 
Yes No Yes No 

Figure 2.1   Comparison of HSP with related PSAs 

Production Memory 

The three comparison PSAs all have a special action which in some way adds a new 
production to PM, maKh.g PM dynamic. HSP does not, for several reasons. The complexity 
of the implementation would be substantially increased, and the gap between HSP and HSII 
would be widened, making comparisons less meaningful. 

[4] The decision not fo add productions dynamically is consistent with what is known about human information 

processing Several seconds (the length of a speech utterance) is simply not long enough for appreciabla 

storage into long-term memory [Newell and Simon, 1972). 

»tfj 
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Working Memory 

In contrast to simple symbolic list structures (e.g., (a b c) or (a (b (c)) (d)) ) 
used by the other PSAs, HSP uses an attribute-value structure.5 The format for a WM 
element field is \ dent i f I er/va 1 ue, with fields being positionally defined if I dent i f I er/ 
is omitted. Arbitrary fields (or subsets of fields) of a WM element can be easily 
referenced in a condition element or action element, and new fields can be created 
dynamically. This added flexibility allows efficient grouping of context into fewer WM 
elements than would otherwise be possible. For example, this means less searching is 
nececsary during condition evaluation. 

The following h an example of an HSP WM element to represent the hypothesis that 
the word "BOOK" was spoKen, beginning at .17 to .23 seconds into the utterance and 
ending at .58 to .62 seconds, with the validity of the hypothesis believed to be 607.. 

< HYP WRD "BOOK"  BTIME/(20 3)  ETIHE/(60 2)  VLD/60 > 

This example illustrates most of the field value types: HYP and WRD are symbolic field 
values; "BOOK" translates internally into an integer (the index of BOOK in the word 
lexicon), and the VLD (validity) is an integer; the begin and end time field values are lists 
of two integers (time and range). 

The last value type, not shown in the above example, is an explicit reference to 
another WM element. Inter-element references need to be represented somehow, and 
doing so explicitly is more satisfactory than implicitly (e.g., by having the two elements 
share a unique subfield, or by having a special third element to represent the linkage). 
Also, as discussed in Chapter 4, these explicit references have a strong positive effect on 
time efficiency. 

The attribute-value and explicit reference features were borrowed almost 
unconsciously from HSII where information in the Blackboard is structured as hyps and 
links (the analog of HSP WM elements), with some fields being pointers to other related 
hyps or links. 

Conditions 

All conditions In HSP begin with an element which directly tests the nature of a change 
to WM (i.e., which type of change, and the identifier of the changed field). Changes to WM 
are themselves explicitly symbolized in the same form as WM elements, although they are 

(5]   How«v«f,   becausB   of  ftaxibiMy  in   m«lchin|,  PSG  it   »bl«   Jo f«(   moi»   of   «h»  iff»«»   of   »n  •HribuU-vtIu« 

■ truclur« with: ( (tl vl) (a2 v2) .. ). 
I 

[6]   This WM el«msn<   a<ruc»ur» is  vsry  similsr  to th» Psrsmslsrizsd Structural Raprt lantation»  of Hayas-Roth 

[1973). 
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not Gtored in WM.' This condition on a change follows naturally from the HSU architecture 
in which Kf^ are required to declare (for purposes of efficient monitoring) which sorts of 
changes they wish to reBct to. In HSP, this initial condition helps efficiency in two ways: it 
allowi- production evaluation filters to be built (i.e., associations from characteristics of a 
change to relevant productions, analogous to the HSU change-monitoring mechanisms), and 
it eliminates some WM searching during production evaluation by pre-binding a variable to 
the changed WM element (which is presumahly being matched by the production if it first 

matched the change itself).8 But it is more than just an efficiency mechanism; it actually 
encodes some additional knowledge. In effect, if says "this is the only relevant change for 
this condition". This saves the inefficiencies of monitoring for and responding to irrelevant 
changes. But sometimes, when more than one sort of change is relevant, it forces wasteful 
duplication of the production. For example, a sequence recognition rule requir ,s a separate 
production for each constituent, representing !he case of that constituent being the last to 
appear. This duplication is significant but bearable in the KSs translated for HSP, but it is 
expected nevertheless to be a serious problem in a more complex system. 

This feature of including a condition element on a change provides another quite, 
important function; namely, it solves the excitatory instability problem. A production will 
fire only when some change has just occurred to WM which makes the production 
condition true. In successive cycles the production will not continue to fire even though 
the same WM state remains true, becafse the relevant change has not just occurred. 
PSiNLST and OPS eliminate excitatory instability by not retiring the same instantiation of a 
production. PSG provides no solution, leaving it to the user to explicitly mark WM 
elements in every action to keep the production from retiring on the next cycle. 

The HSP architecture permits special predicates to apply to integer-valued WM 

element fields. These are expressions surrounded by [ ] and buiit from the arithmetic 

relations > and < and operations +, -, *, /, MAX, HIN and ABS. Further, such predicates 

can be composed to form compound predicates with AND, OR and NOT. (This NOT is 
different from the one for negation of an entire condition element). For example, the 
predicate [ NOT > 8BT+t5] tests a WM element integer field to see if its value is not 

greater than the value of variable SOT plus 15. 

PSNLST and OPS go even further than HSP by allowing an arbitrary LISP function as a 
predicate. This may be inappropriate because if gives too much power to the condition 
evaluation, and if exploited to its fullest could subvert the basic PSA philosophy. 

The attribute-value structure in HSP allows a condition to be specified on an arbitrary 

« 

[7]   An early version of HSP did ilore change element« in WM, opening up »ome inleresfing possibilifiee for the PS 

moniforinj ifs own behavior, However, the feature had lo be abandoned for implemenfalion reasons. 

[8] PSNLST uses <ho same sort of association from change« lo relevant prodjefions and also does some pre- 
binding to variables in a p>oduelion condition based on the change, but the change i« not explicitly matched in 

the production condition. 
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suhr.et Of the fields of some WM element. For examp'e, the condition element < HYP WRD 

VLD/[ > 80] > matches all word hyps whose validity is greaier than 80, regardless of 
what other fields they may have. This is essential, given that information tends to get 
added as extra fields of existing WM elements rather than as separate WM elements. PSG 
and OP? have a partial capability for matching subp?rts Of WM elements, in that a 
condition can apply to an initial subsequence of subelements (i.e., the tail of an element 
can be ignored). 

Although early versions of HSP followed the lead of the other PSAs in providing 
disjunctions within conditions, disjunctions were eliminated in an intermediate design 
iteration. This simplified the interpreter and increased parallelism (but at the cost of some 
increased redundancy, both in space and time). It elimina'ed the (minor) confusion cf a 
second source of multiple firings of a single production (the first being multiple matching 
WM elements for some condition element). Finally, it made production counts as a measure 
of knowledge content more meaningful since it prevents two productions with substantially 
different conditions from masquerading as one just because their actions are the same. 

Negated conjunctions were ruled out to simplify implementation, but also out of a 

vague feeling that they give more power to a single production than is appropriate. 
Besides, a negated conjunction such as NOT (A B C) can be split ir separate 

productions with the following conjunctions: NOT A , A NOT B and A B NOT L. ith the 
conjunctions written in this way the three productions are mutually exclusive, avoiding 
multiple firing problems. Rychener [1976] cites negated conjunctions as an essential 
feature of PSNLST, beinp, used .4 times per production on the average. Some of these 

uses can be expressed in HSP as a single negated condit.on element. Yet there are other 
important uses of negated conjunctions in PSNLST that are not conveniently representable 
in HSP, requiring instead several coordinated productions acting over several PS cycles. 

In HSP, if a condition element is proceeded by 8V=, then one of two things may 

happen. If the variable 8V is unbound in any previous (to the left) condition element, then 
a successful match of the current condition element will bind the matched WM element to 

$V. If on the other hand the variable is already bound, the condition element is applied 

exclusively to the WM element reference bound to SV (i.e., no WM searching occurs). Most 
often this case results from the variable having been bound to an explicit WM elemeni 
reference contained in an earlier-matched WM element. 

[9]   Behind   Ihii   in  ■   concern  thai   loo  powerful « condition  len(u>t*  wi"  defeat   the  besic  PSA   property   of 

"immediale" recognition. 

(10J For example, the HSP condition: <a 3> NOT <i (>3] > it true if the elemeni <• 3> ii in WM, but no »imilar 
element with a number greater than 3 ii also In PSNLST a negated conjunction it required to represent this 

since the *>* predicate ie not built into the architecliv*. 
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Actions 

There are teven action primitives in HSP: 

NEW creates a new element for WM 

DEL deletes an element from WM 

HOD replaces 'n a WM element the value of !he f;eld with a given identifier 

HOD. ADD adds to a specified list field of a WM element 

HOD.ADDE adds to the end of a specified list field 

HOD,REP makes a replacement within a specified list field 

HOD,DEL deletes from a specified list field 

PSNLST and OPS have only a create and delete for whole WM elements. This is of 
course adequate, since any small change can be made by deleting the old element and 
creating a new one which is a copy of the old except for the change. But the large size of 
most elements in HSP makes this undesirable, both for efficiency reasons and because 
copying of an element is not possible when only a few subfields have been matched (as is 

often the case). 

It should come as no surprise that the set of HSP action primitives closely mimics the 

set of Blackboard modification routines in HSII. Note that a HOD, HOD, ADD or H0D,ADDE 
operation on a non-existing field will create the field; i.e., this is how dynamic creation of 
new fields is effected. 

Control 

A feature of HSP that distinguishes it strongly from l^i others is the absence of any 
conflict resolution process. All productions which evaluate to True in a given cycle, no 
matter how many, are allowed to execute. The motivation for this design choice comes 
largely from the example of HSII; the existence of multiple, independent sources of 
knowledge (productions in HSP) makes multiple production firings a natural choice. 

Another reason for doing without conflict resolution is a desire to minimize the 
knowledge built into the PS interpreter and simply let the production conditions take care 
of themselves. The OPS designers disagree with the desirability of this. McDermotl and 
Eorgy [1978] express a concern that extending production conditions to resolve their own 
conflicts will severely restrict the system's ability to learn. Thus they opt for a thorough, 
carefully designed conflict resolution mechanism [Forgy and McDermott, 1977]. Learning in 
HSP is a moot point; but by analogy, absence of conflict resolution may wall have a serious 
negative impact on the problem of augmentation. 

The absence of a conflict resolution mechanism does cause problems for HSP. But they 
seem to be surmountable, often requiring a few extra coordinated productions operating 

[11]   AMhough ■ very large number might cause tome concern because of • loss of control over directionality. I.e., 

(he ayslem'a ability to rapidly shift its focus of attention would be hampered. 

i—i 
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over several PS cycles. These extra productions usually make use of an explicit delay of 
some small number of PS cycles. This n-cycle delay is implemented with a chain of 
productions that simply mark time, waiting until some related activity is known to be 
finished. 

HSP is alone in allowing multiple productions to fire in a single cycle. The other three 
architectures use their conflict resolution to select a unique production to fire, resorting to 
arbitrary choice when necessary. Although multiple productions may fire in a single cycle, 
there is still a global synchronization at the end of every cycle. All productions must have 
been evaluated before any action may be executed. (During evaluation, actions are 
"interpreted" to obtain symbolizations of the changes indicated in the actions, then when 
all evaluation is completed the changes are actually made). This has direct implications for 
parallelism and synchronization of parallel activity, as will be seen in Chapter 5. 

Firing multiple instantiations of the same production means that the action of a single 
production may be executed multiple times — once for each possible set of bindings to 
variables in the condition that make it True. HSII KSs exhibit an exact analog of this 
property, in fact, its use seems almost mandatory for the case of speech knowledge 
operating at Tnulfiple locations in the utterance-time dimension. For example, a production 
which responds to a new word "BOOK" should fire twice if two "BOOK^ appear at different 
utterance times.12 Of the comparison PSAs, PSG is the only one which doesn't have this 
property ofjterating through all instantiations of a production; current philosophy seems 
to regard it as an essential convenience. 

M feature which separates HSP from the others is the use of parallelism in the 
underlying system to speed up evaluation.13 No more will be said here about parallelism 
since Chapter 5 is devoted to it. 

HSP has no mechanism for special case inhibition; i.e., a mechanism that prevents a 
production from firing even though true when a more special (however that is defined) 
production is also true. (The other PSAs obtain special case inhibition through their 
conflict resolution). Doing without special case inhibition eliminates some mechanism from 
the PS interpreter, but this is a relatively minor advantage; the main reason for the 
decision was to obtain as high a degree of parallelism in the evaluation as possible. Any 

[12J   Th« need to foeut »clivi»y of lh» system providtt • b»«ii for favorinj eorUin tim» rofion«, but foeussint in 
HSP should b« conlroliod by ■U|m«Mm» production condition! to bo tontitiwo to tho tim» rofion, not by howinf 

a separat» machiniim. 

[13] The original varaion of OPS wa« daaijnad to auplol» parallalism, althoujh it« implamanfation w»a not on • 

parallel machine The most recent OPS version haa |iven up it« inclination toward parallaliam in order to be more 

efficient on a uniprocaaaor 

e 

[14]     Ef' P* >« • special caae of Pb if it ha« all the condition elamanla of Pb plu« «ome extr« one«. 
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scheme for doing the general-special case checking would probably result in a significant 
reduction in parallelism. 

Giving up special case inhibition has rome serious consequences, both for programming 
convenience and tor the learning of new productions without modification of existing 
productions (though this is a moot issue for HSP with its static PM). However, there are 
ways for HSP to get around the programming inconvenience: general case productions can 
be augmented to make them special, i.e. to make them fire only when no special case 
production is true; or both general and special productions can be allowed to fire, if there 
are other productions which can detect this and favor the special case result. 

^.i^«--1  "» 
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Chapter  3 

A Comparison of Representation in HSII and HSP 

This chapter compares#several aspects of representation of knowledge in HSII and 
HSP. it is based on 12 KSs which were translated from their HSII form to HSP productions, 
with varying degrees of completeness. Figure 3.1 shows these KSs, all of which listed 
in the January 1976 version of HSII.1 The following four KSs, also part of that HSII 
version, were not translated to HSP: PSYN and CSEG for mapping segments into phones^2 

FOCUS for directionality control; and the postdiction KS of the SASS module. 

SASS module (Syntax and Semantics) 
RECOG Recognition of phrases from words and subphrases 
RESPELL Spelling of phrases into words and subphrases 
PREDICT Prediction of adjacent words and phrases 

SASS module (newer version) 
RECOG Recognition of phrases from words and subphrases 

POMOW module 
MOW Recognition of words from syllables 
POM Recognition of syllables from segments 

WOMOS module 
WOM Spelling of words into syllables 
MOS Spelling of syllables into phonemes 

POSSE module Phone - surface-phoneme synchronization 
TIME 
SEARCH 

SEG For inputting segments into Blackboard 
RPOL Rating propagation policy 

Figi. i 3.1 The HSII KSs thai were translated to HSP 

The POM KS was translated with particular attention to completeness, and thus 
provides a focal point for most of the detailed comparisons that follow. ROM's function is 
to recognize likely syllables from the speech segments at the next lower level of the 
Blackboard.   It   is   a  complex, multi-phase  process,  using  three  intermediate   levels  of 

[I] Thi» is configuraJion Cl in [Lasser »no Erman, 1977]. For mor» informalion aboul »h-*« KSi consul» ih» 
following: SASS [Mos»ow and H»y«»-Ro»h, 1978; Hay»s-Ro«ht MosJow and Fox, 1977]; Mc tid POM [Smith, 

J976]i WOM, MOS and POSSE (Cronk and Erman, 1976Ji RPOL [Hayss-Roth, Erman and Lasssr, 1976], 

[2] These «wo were eliminated from HSII soon after January 1976 by chan|in| POM »o work direelly from 

segments rather than phones. 
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representation between the segments and syllables. It contains a wide variety of 
knowledge, possibly more so than any other KS, and thus exercises a good deal of the HSP 

architecture. , , 

In spile of the attempt to translate POM with absolute fidelity, some deviations were 
unavoidable. Most of them can be justified by the architectural differences of HSU and 
HSP; the remaining few are unimportant. What is needed is some assurance that no 
significant differences do exist; i.e., that the translation to HSP was adequate. The first 
evidence for this lies in the nature of the translation process itself. During translation the 
HSII KS code was studied statement by statement, and thus it is unlikely that any major 
omissions or mistranslations occurred. The second bit of evidence is more direct: in the 

single test run3 the HSII and HSP systems produced the same five alternative syllable 

hypotheses as output.^ The syllable ratings do not match exactly since different methods 
arc used for calculating the final rating. (This is one of the aforementioned unimportant 
differences). However, the rank orderings are reasonably consistent. 

This chapter proceeds now to comparisons of several representational aspects that 
distinguish HSII and HSP. These aspects were chosen because they relate (directly or 
indirectly) to one of the implementation problems introduced in Chapter 1, or perhaps 
because they present a particularly striking difference between HSII and HSP. To aid in 
coherence, these comparisons are divided into three categories: long-term memory 
(containing the bulk of the material), working memory, and control. 

3.1    Long-Term Memory 

By long-term we mean having a scope spanning more than the understanding of a 
single utterance. In the case of a speech understanding system remembering (he context 
of an entire discourse, there might be an issue about whether to call this long-term or 
short-term knowledge. However, HSII and HSP deal only with isolated utterances. Thus the 
long-term knowledge is the static, general speech knowledge. The short-term memory is 
empty to begin an utterance, and is dynamically built up during the processing of the 
utterance. 

There are quite a number of comparative points to be made about long-term 
knowledge representation, and each will now be considered in turn. 

[3]   The nature of ih» (ai ( run it »xplained in the following chapter. 

[4]   Actually, POM outpuli lyllablt daises, called nvHypee. but Ihii it not important in this context. 
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3.1.1    Adoquacy 

The basic evidence for adequacy is that a large number (12) of HSII KSs were 
tr^nslated to HSP productions. However, there are nearly 20 other KSs'that have been 
used at one time or another in HSII [Lesser and Erman, 1977]. Most of these were simply 
not yet in existence at the time the HSP translations were done. Based on a moderate 
understanding of how these other KSs work, there is no reason to believe they would be 
more difficult'to represent in HSP than the 12 that were translated.5 Efficiency s another 
matter, as discussed in Chapters 3 and 4. 

This is not to say there were no difficulties in the translation, or that the resulting 
broductions do not have some awkward aspects.   For example: 

An HSP production cannot iterate over WM element list fields of arbitrary length. A 
separate production is required for each possible list length, while in HSII a single 
iteration statement suffices. This apparent failure of the PSA is an artifact of the 
mimicking in HSP of HSII's explicit references between hyps. If references in HSP 
were individually represented as WM elements, iteration would be handled 
naturally by the multiple firing of a single production. 

Controlling duplicate actions is an occasional difficulty. When the changes in 
question are simple modifications (i.e., the MOD action primitive), the system 
automatically weeds out the duplicates so that multiple production firings do not 
occur on the following cycle. When the changes are NEW, DEL, MOD, ADD, etc., the 
system provides no help. The real problem with NEW elements is not detecting a 
duplicate, but the lack of any basis for favoring one of the duplicates (while the 
others are deleted). It might be feasible to automatically checl« for duplicates even 
in this case, but it would be expensive. For example, every NEW WM element would 
trigger a rmfch against all of WM. An alternative solution is used by the HSP POM 
KS to eliminate duplicate syllable recognition. An extra cycle is taken which 
effectively represents in WM the fact that a new syllable is to be created, but 
distinguishes the two possible sources. Then the following cycle is able to detect 
duplication, ani simply always favors one source over the other 

There is currently no way in HSP to keep a tally (in WM) of some event being 
monitored. For example, a production counting new word hyps would add one to a 
count in WM every time a new word appeared. But if several appeared on the 
same cycle, the coui.t would still be only increased by one (although redundantly). 
This tallying capability is representative of a class of operations which are crucial 

[b] Thnr» is »om» diroc« posUiv« evidenc« for on« of th« tnoro iuspec« uMranslaUd KS«, nam«ly th« word verifwr 
which uses Ihs WIZARD proendurs [McKeown, 1977] HSP POM eonlsins production« for searching a syllabi« 

siale fransilion nelwork which is ««»«nlially lha sama a« «ha word n««work« usad by WIZARD. Th» POM 
producfions would not carry over exactly because Ih« WIZARD network« have longer path« with less 

favorable combinatorics  But the POM production« do ahow bsaic adequacy for WIZARD. 
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for implementing directionality in HSP (see Section 3.3.2). Perhaps the right 
answer is the simple expedient of adding an "increment" change primitive. 

Arithmetic expressions in HSP often exhibit substantial redundancy within a single 
production. Some means of saving results of common subexpressions (e.g., by 
assignment to a local variable) would be helpful. 

Taken together, these difficulties, and the few others not described here, are not 
serious enough to refute the claim of adequacy, though they do take their toll in other 
problem areas such as efficiency. Furthermore, there seems to be a good possibility that 
iteration on the design of the HSP architecture could remove most of these difficulties 
without deviating from basic PSA philosophy. 

3.1.2   Simplicity of the Language 

While there are conventions for HSU KSs, including the provision in the HSII kernel of 
many primitives for accessing the Blackboard, KSs tend to use most of the expressive 
power that SAIL provides: character-string manipulation, sets, lists, associative structures 
and conditional assembly. The language provided by HSP for writing productions is a good 
deal simpler than SAIL. Figure 3.2 shows a comparison of four aspects of the language 
environment for KSs: the number of primitives (operators, pre-defined functions, 
constants), the number of data types, the size of the runtime support, and the size of the 
"compiler" for the language. 

HSII HSP HSII/HSP 

Primitives 310 53 6 

underlying system 
kernel 

130 
180 

Data types 10 5 2 

Runtime support (Kbits) 
underlying system 
kernel 

2212 
457 

1755 

494 
203 
291 

4 
2 
6 

Compiler (Kbits) 3100 264 15 

figure 3.2   Comparison of KS languages in HSII and HSP 

For HSII the primitive count is split into basic SAIL plus interface to the HSII kernel; no 
such split makes sense for HSP since productions as a rule do not contain any basic L* 
code.    The SAIL primitive counts do not include I/O formatting or conditional compilation 
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functions, nor any primitives that a KS would not reasonably be expected to use. The 
runtime support for HSP includes the production interpreter (40 Kbits); SAIL has no such 
interpreter. As a result its compiler's task is more difficult than HSP's. HSII runtime 
support excludes 817 Kbits for debugging facilities in the kernel. The HSP "runtime 
support" and "compiler" in HSP are just pieces of a single integrated system built up from 
a basic L* system of 203 Kbits, but the size of each above excludes storage of external 
names (141 Kbits) and utilities for editing, debugging, etc. (49 Kbits). 

In summary, the HSP production language can be said to be roughly 5 times simpler 
than HSU's KS language, with the exact factor depending on how it is measured. This 
simplicity is a positive feature in so tar as it helps with problems such as debugging and 
augmentation. Yet is raises some concerns about adequacy, and even stronger ones about 
efficiency. 

3.1.3   Declarative Knowledge and Multiple Use 

The distinction between declarative and procedural encodings of knowledge has been 
the basis for a long-st?nding dispute in the f'sid of artificial intelligence. Winograd [1975, 
p.186] provides a good overview of these two opposing viewpoints: 

The proccdaraLists assert that our knowledge is primarily a "knowing how". ._ What 
a person (or robot) knows ... is coexistent with this set of programs for operating 
with it. ... The declaratiuists, on the other hand, do not believe that knowledge of a 
subject is intimately bound with the procedures for its use. They see intelligence as 
resting on two bases: a quite general set of procedures for manipulating facts of all 
sorts, and a set of specific facts describing particular knowledge domains. 

Winograd goes on to describe some of the advantages on each side, and concludes that 
the declarative and procedural formalisms are endpoints on a spectrum of modularity vs. 
interaction. The ultimate in modularity is exemplified by a set of logically independent 
mathematical axioms, a pure declarative representation. At the opposite end, programming 
deals explicitly with interactions. The ultimate answer may lie in an appropriate synthesis 
of the two extremes. Indeed, a PSA can be seen as an attempt to recover some benefits 
of modularity in a pure procedural encoding by forcing all interactions through a single 
working memory. 

The HSII KSs use a combination of procedural and declarative representation for long- 
term knowledge. The procedural is in the form of SAIL code; the declarative consists of 
Variables and arrays whose contents are initialized from files at the beginning of a run. In 
the HSII POM KS, for example, there are arrays for such things as segment vowel 
probabilities, legal syllable state transitions, state transition probabilities and spellings of 
syllables as state sequences. Declarative structures such as thete account for 307. of the 
total space in POM, but their dynamic use is greater than that figure implies. 

[6]    UnfoHuna^ly, no dynamic daf» on us» of Knowisdjt in HSII could b» obUin»d. 
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HSP, on the other hand, has no declarative long-term memory — all long-term 
Knowledge must be encoded procedurally as productions/ This leads to a number of 
difficulties for HSP. The speech task in general seems to require a large number of 
knowlodge bases that are representahle conveniently in declarative form; e.g., tables of 
probabilities, similarity matrices, dictionaries of spellings, and grammars. When these 
knowledge bases must be represented procedurally, there are serious problems with 
efficiency and multiple use of the knowledge. 

Virtually all of the instances of large uniform data bases can be represented efficiently 
in HSII by packing into arrays; and cost considerably more when represented as HSP 
productions.   The following are examples of this, with comparative space costs given: 

Vowel probabilities ( "A"-type, T-type, and "LT-type) for each of the 43 possible 
segments. 

I 
HSP uses 43  productions, each of which modifies a  new segment  hyp  to 
have three new fields with the "A", "I", and "U" vowel probabilities.   Each 
production  requires   10 wordsr, for a total  of  7  Kbits. , HSI! packs  the 
probabilities into a single 43 entry array, for a total of 1.8 Kbits. 

State transition probabilities: the probability that state y follows state x given that 
segment z is one of the alternatives adjacent in utterance time to state x. 

• If represented in a standard array, a total of 6 x 6 x 43 = 1548 entries 
would be required for the left syllable states, and an equal number for the 
right. If a sparse encoding were used, the number could be somewhat 
smaller since not all pairs of states represent legal transitions, plus many 
zero entries could be omitted. In fact, HSII POM stores only 883 
probabilities, each packed info 18 bits, for a total of 15 Kbits. In HSP, each 
probability value is encoded by a production which responds to a special 
WM element containing the context of states and segment; if the context is 
the one that the production encodes, the probability will be stored into a 
field of the new state hyp. The high cost of 10 words (160 bits) per 
production forced the use of a cutoff on the probability value: only values 
of .4 or  above  are represented.   This  brings  the  number  of productions 

[7] Winojrad'e natural languae« understanding sydem [Winojrad, 1972) it • prim« »xample of procedural encoding. 
But II also contains some declarative long-term knowledge that is used quits heavily, eg., a set of syntactic 

features associated with each dictionary word, and t semantic feature network used for an initial phase of 

semantic analysis Thus HSP is more procedural than Winograd's system. 

[8] A side problem was the large number of productions which had to be defined. This was solved by making 
modifications to the auxiliary programs that MSII uses to initialize the declarative structures, making them 

output productions in HSP formal instead. This was don« for POM, MOW, W0M0S end SASS. 

[9]     A condition procr-ure is used to save space ~ see the end of Section 3.1.4. 

MMM* 
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down to a manageable (though still excessive) 589, for a total of 94 Kbits. 
The impact on performance of omitting all values less than A should be 

minor, but is unknown. 

The. second major difficulty with procedurally encoded knowledgei is allowing for 
multiple use. When knowledge is encoded in a production it is tied to some particular 
condition, and thus cannot be applied under different conditions without duplicating it in 
other productions. Declarative encodings do not have this problem since they are 
divorced from control information, and any procedural unit that has access to the data can 

make use of it. 

There are several methods that HSP uses for dealing with the problem of multiple use: 

(1) Duplicate the knowledge When the number of uses is small, it does little harm 

to just duplicate the knowledge in the several productions that use it.10 

An example of this in HSP is the dictionary of word spellings. The MOW KS uses 
these for recognizing words from syllables, while the WQM KS uses them in the 
opposite direction for prediction of syllables from words. Thus the spellings of 
words as syllables are duplicated in HSP, whereas HSII has a single copy in 
declarative form globally accessible by both KSs. 

Often when knowledge must be duplicated in a number of productions, it Is possible 
to use condition and action procedures (see the end of Section 3.1.4) to maintain 
a single shared copy. Of course, this is only possible if the different uses are just 
minor variations, but they often are. And this sharing does solve the multiple use 
problem without deviating from pure procedural encoding. 

(2) Subroutines. Knowledge with multiple uses can be encoded in productions that 
respond to a special WM condition (the subroutine call) and make the knowledge 

available (to the caller) by appropriate WM changes. 

This method is used for the syllable state transition probabilities in POM. There are 
three conditions for use of the knowledge, depending on whether the segment in 
question is the first, second, or third alternative for a gh'en time region. These 
three productions each create a special WM element which contains the context for 
determining the probability. The appropriate probability production responds to 
this new WM element and, using the information recorded there, returns the 

, probability as a change to a known field of the: new state hyp. 

(3) Copying into WM. In the case where multiple conditions for use of some 
knowledge share a common subcondition, that common condition can trigger a 
production which deposits the knowledge into WM. It is then available in 

declarative form for any use. 

[10]    Th« problom of upd»linj (ht muMipl« copitt could b» »»rioui in iom» cireumiUnc»», tMhoufh it WM no» in 

tho KSs trniulaUd. 
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A version of SASS was written to try this approach for the rules of the grammar. 
The appearance in WM of a word or phrase triggers the copying into WM of all 
rules that have it as a constituent (one copying production per rule). These WM 
elements representing grammar rules remain for only a single cycle, which is 
long enough for use by any of the recognition, respelling, prediction, or postdiction 
productions that care to respond to the original word or phrase. Time constraints 
did not permit debugging and running of this SASS version, so it is not known 
whether the overhead of the continual creation and deletion of grammar rules in 

WM is prohibitive. 

These means for controlling the problems of multiple use are sufficient for the current 
HSP system, but it remains to be seen whether or not they break down when more 

complex systems are attempted. 

It seems appropriate at least to entertain the possibility of adding a facility for long- 
term declarative knowledge to the HSP architecture. Such a facility was spurned during 
development of HSP" to keep the architectural comparisons pure. But if HSP were a 
development system rather than a research tool, immediate efficiency concerns would 
probably force a number of compromises such as this. | 

The syllabie state transition probabilities in POM .provide an example. As mentioned 
above, the current scheme uses two PS cycles: the first involves 6 productions (3 for the 
alternative segment positions with left syllable states, and 3 similarly for right) which 
create a special WM element containing the relevant context. This creation triggers on the 
next cycle some subset of the 589 productions that encode the probability values, at most 
one of which will actually fire. 

Suppose that the simple expression language used in HSP productions were augmented 
with a facility for accessing a multidimensional array. Then there could be just a single 
cycle: 6 productions which bind the relevant context to variables and then access the 
probability from a three-dimensional array. This would save the space for the 589 
separate productions (about 100 Kbits), and remove the extra cycle and the creation and 
deletion of the special WM elements. It would also permit inclusion of the array vjilues 
below .4 which the current scheme eliminates. Storing the full array would take about 50 
Kbits in HSP, but this could be reduced substantially by packing and using a sparse 
encoding. 

3.1.4   Space Efficiency 

A comparison of space requirements for representation of long-term knowledge in HSII 
and HSP is not an easy task. The two systems have many differences incidental to the 
architectural differences we are interested in comparing.   Thus we cannot be sure that the 

[11]     le, Ihore is ■ production which responds )o lh« tppsarancs of such in element in WM »nd deletes it  on th» 

following cycl«. 
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i 

sizes don't reflect programmer differences, degree of optimization of the language, or 
improvements due to HSP being an extra iteration beyond HSII (to name just a few). 
Nevertheless, the data do provide a comparison that is accurate enough for our purposes. 

Although 12 HSII KSs were translated to HSP, usable space comparisons could be 
obtained for only two: POM and RPOL, as shown below in Figure 3.3. Most of the other 
10 are incomparable because of simplifications introduced during translation. Several 
actually ceased to exist as HSII KSs, making it too difficult to obtain good HSII size data. 

size (Kbits) ratio 
KS HSII HSP HSP/HSII 

POM 220 238 1.1 

RPOL 30 30 1.0 

Figure 3.3   Space comparison of long-term knowledge in HSII and HSP KSs 

Because of the special problems declarative knowledge poses for HSP, space 
accounting needs to be done separately for procedural and declarative HSII knowledge. In 
the figure above, the ratios are very close to 1; but RPOL is virtually all procedural 
knowledge, and POM is mostly so (its declarative/procedural split is .3/7). As we shall see 
below, declarative knowledge alone yields HSP/HSII space ratios significantly larger than 1. 

A detailed space analysis was carried out on the POM KS, faking care to separate 
declarative from procedural knowledge. This is shown in Figure 3.4, with sizes broken 
down into a number of functional categories. The categories are ones the HSP productions 
naturally form. HSII POM had to be mapped into these categories on a stafement-by- 
statement basis, though the mapping was fairly clean. The procedural sizes include modest 
amounts of local working memory (e.g., local variables) since this could not be easily 
separated from the long-term knowledge.12 Although all long-term HSP knowledge is 
procedural, only that par, translated from HSII procedural knowledge appears in this 

comparison. 

[12]   Thi« would b» inappropriaU for KSi ouch at SASS which hav» larft amounJi of local workinj memory. 
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size (Kbits) ratio 
HSII HSP HSP/HSII 

7.3 5.7 .8 
12.1 5.3 .4 

0 1.0 -- 
2.4 2.7 1.1 

24.2 9.4 .4 
22.4 14.9 .7 
1.7 3.8 2.2 
2.8 5.8 2.1 

64.7 31.6 .5 
2.9 5.1 1.8 

16.6 20.7 1.2 

functional unit 

Utterance boundary handling 

Gap (silence) handling 

Segment vowel probabilities 

Total vowel probabilities 

Syllable nucleus finding 

Nucleus context building 

Segment rating normalization 

Combined vowel probabilities 

Syllable stdte transitions 

Endstate boundary time setting 

Syllable recognition 

Total 157 106 .7 

Initialization 85.3 0 3 

Display 27.9 0 0 

Figure 3.4   Space comparison of procedural long-term knowledge in HSII and HSP POM 

Note thbt HSP has nothing under the Initialization category. The function of 
initialization in HSII is to set up the contents of some variables and arrays with long-term 
Knowledge (from auxiliary files), and to clear the contents of others being used for KS- 
local working memory. HSP has no need for either of these functions. The Display 
category is also given separately since display productions were left out of HSP POM to 
reduce the total translation effort. Also, the display facilities are less essential in HSP 
than HSII due to the central tracing facility in HSP. The internal workings of an HSII KS 
are not so easy to trace since they are not under interpretive control, although it is 
possible to trace calls to HSII kernel functions (e.g., Blackboard accesses). 

The "segrpent rating normalization" and "combined vowel probabilities", though pure 
procedural, have unusually high HSP/HSII ratios. This is due to the inability of an HSP 
production to deal with WM element list fields of arbitrary length. In both the above cases 
some operation is being performed on all the alternative segmerf hyps at a given time 
position, as listed in a field of an "option segment" hyp. This requires a separate 
production for each possible total number of alternatives. In this case the maximum 
number is only three, by convention with the KS which creates the segment hyps. If it 
were larger, as it may well be in other cases, the space cojfs would be much more serious. 
By comparison, a single iteration statement suffices in HSII to handle any number of 
alternatives. 

There are a couple of possible explanations for the 307. decrease in total size from 
HSII  to  HSP. First, HSP productions can be more compactly encoded because they are 
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interpreted. Secondly, USP can represent simple conditions and complex searches of global 
working memory r.iore concisely than HSU. But the substantial variation in the space ratio 
from .4 to 2.2 across the separate categories belies such simplistic explanations, and a 
complete explanation ic buried in many separate details. 

Data on long-term declarative knowledge, shown in Figure 3.5, is available ♦'■om all 
of the translated KSs since it can easily be estimated from source listings in both systems. 
The results are given individually for all the large structures, and each is classified 
according to its type. Recall that the HSP data actually refers to that' part of its all- 
procedural long-term knowledge which is a translation of declarative HSII knowledge. 

size (Kbits) i atio 
type HSII HSP HSP/H5II 

array 20 25 1.3 
array 1.8 6.9 3.8 

bit array 1000 1100 1.1 
spellings 30 30 1.0 
spellings 29.6 24.3 .8 
network 30 35 1.2 
network 31.1 100 3.2 

r.ource 

(1) POSSE similarity matrix 

(2) POM vowel prob 

(3) WOSEQ word adjacency 

(4) MOW syl-word diet 

(5) POM state-syl diet 

(6) SASS grammar 

(7) POM syl state trans 

Total (excluding (3)) 140 220 1.6 

Figure 3.5   Space comparison of declarative long-term knowledge in HSU and HSP 

The WOSEQ bit array (3) is an unusual case deserving special explanation. WOSEQ, the 

word sequence hypothesizer, uses an n s n bit matrix (where n - the number of words in 
the vocabulary, or 1000 in a full HSII system) to provide a fast test for grammatical 
adjacency of words. Since each entry requires a production of about 64 bits in HSP, the 
consequences couid be disastrous, however, the sparseness of the matrix saves the day: 
only 17,000 productions (rather than a million) ar^ necessary since the matrix has ores in 

only 1.77, of its entries. 

Excluding (3), the total ratio comes to l.Sj i.e., a 507. size increase in translating from 
HSII to HSP. But there is considerable variation among the individual cases. The differences 
between the ratios for (1) and (2) can be completely explained by the fact that array (2) is 
totally represented in HSP, while array (1) is not since it has only 357. non-rsro entries. 
HSP's   representation of  arrays  acts  as a sparse encoding  mechanicm: productions are 
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1 T 
required only for the non-zero entries while the zero values are handled as the &»f»-M. 
The relatively small ratios for (A) and (5) (spellings, or arrays of «.(rings) can be explavned 
by a peculiarity of SAIL: there is a large (72 bit/ fixed overhead »or string represe->laUon. 

The HSP sizes for both Knowledge types (Figures 3.4 and 3.5) are biased upward due 
to non-optimal encoding of productions. In particular, HSP condition elemenfu ^re 
represented using the same type of list structure as WM elements, requiring 3 wordi per 
field. A careful encoding could reduce this cost by a factor of between 2 and 3, giving an 
overall reduction in space of as much as a factor of 2. However, if should also be noted 
that the SAIL compiler does not produce highly optimal code, so that a similar (though 
probably smaller) bins exists in the HSII data. 

Other measures besides bit counts help to fill out the picture for pr dural 
knowledge. One is token counts; i.e., counts of lexical atoms, as would be recognize y the 
KS language compiler. They presumably provide an indication of program '.e as 
perceived by a human. The other is statement counts. For SAIL, the usual def .on of 
statement is used; for HSP, the sum of production, condition element, and act'or. ement 
definitions is used, corresponding to a view of condition and action elements as 'jimple 
statements and productions as compound statements. These counts (shown below in figure 
3.6) mainly provide additional support for the bit counts of Figure 3.4 — the 
correlation is good for the most part. Functional units containing declarame knowledge 
have been omitted since token and statement counts do not make sense for \bnm. 

[13] Sines HSP array repreEentalions makt use of (he PM index efficiency mechanism (described in Hi« following 
chapter), i< might be approprule to include tha PM index rpace even though if is inessential (ie., is only for time 

efficiency) In general, a one-dimensions,! array requir«i about 100 bits per production for the PM index. For 

example, the ratio for (2) would increase from 3 8 to 7 if we included PM indxx costs. However, we ehoie no* 

to do so throughout Figure 3.5. 

V sz 
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functional unit 

Utterance boundary handling 

Gap (silence) handling 

Total vowel probabilities 

Syllable nucleus finding 

Nucleus context building 

Segment rating normalization 

Combined vowel probabilities 

Endstate boundary time setting 

Total 

Initialization 

Display 

token ( :ount ratio sta [ement count ratio 

HSII HSP HSP/HSIl HSII HSP(P+CE+AE) HSP/HSII 

2Jl 257 .9 33 2+     6-»- 10 .6 

419 244 .6 50 3+    9+    4 .3 

119 146 1.2 14 3+    5+    3 .8 

551 387 .7 66 8+ 23+ 11 .6 

964 817 .8 121 22+ 39+    6 .6 

eo 203 3.4 5 3+    8+    6 3.4 

95 312 3.3 8 3+    8+    9 2.5 

123 239 1.9 13 4+ 12+    4 1.5 

2622 2615 1.0 310 48+110+ 53 .7 

2627 0 0 337 0+    0+    0 0 

1367 0 0 163 0+    0+    0 0 

comparison of procedural knowli sdgo in HSII and HSP POM 

Space costs in HSP would have been much higher if it weren't for the capability of 
sharing common subparts among productions. Any sequence of condition elements (even a 
single element) can be defined in a named list (called a condition procedure), and then this 

single copy can be referenced in multiple productions. "These procedures can even be 
parameterized for cases where multiple uses are similar but not identical Acho" 
procedures provide the analogous function for action elements. These capabilities are 
used heavily: the 906 productions of the POM KS have a total of 2214 condition elements 
and 1457 action elements, but only 107. of condition and 87- of action elements are 
separately represented.   Thus a factor of about 10 in space is saved in this manner. 

3.1.5   Knowledge Unit Size 

The HSII and HSP architectures display a large difference in the size of knowledge 
units that are evokable by global working memory conditions. For HSII we count an entire 
KS and its PRE (precondition) as a single unit,15 while for HSP every individual production 

counts as a unit. 

fl41 Th» Itvtli ofaubflruelurt to produt.d .r. «r.n.piftn« lo «ht production inJtfpr.Ur. Tht only «ff.c« on 

op*r.»ion it . r«lll|ibto slowdown du. lo U.vr.in, (IN .xir. I.v.1., and <o ..■itmn( of p.r.m^.f. lo 

procedure viriablsf. 

I 

(151 An HSII KS module eo-nbin.. on, or more KS. (.nd ...oci.l.d PRE.) in«o . l.rf.r uni«, with .om. da». 

„Wuctur.. .hared among KS. Eg. Ih. POM and MOW KS. ar. actually combln.d "••'"«'• '"°du,• ""•d 

POMOW. S»lll, w. will con..der mdmdu.l KS. a. uni». b.c.u...«h«y ar. «h. amall.t» .nd.p.nd.nlly .vokabl. 

unilt. 
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Figure 3.7 shows the number of HSP productions obtained in the translation of the 
\2 HSII KSs. The most reliable count is for the POM KS since POM was es-entialiy 
completely translated. Simplifications were made in the translation of the other KSs, so 
their production counts are low — perhaps as much as a factor of two in some cases. One 
reason there are so many productions is that many are simply an enumeration of cases* for 
a single situation. For example, the WOM KS has a production for every word in the 
vocabulary, and POM has a production for every pair of right and left syllable halves that 
combine to form a valid syllable. Thus Figure 3.7 also shows production counts adjusted 
by discounting all such large enumerations.^ 

KS count adjusted count 

SEG 50 4 
POM 90S 82 
POSSE (TIME and SEARCH) 215 22 

WOMOS (WOM and MOS) 254 30 
MOW 491 15 
SASS (early version) 

RECOG 305 90 
RESPELL 234 76 
PREDICT 192 78 
General 30 30 

SASS (new version) 
RECOG 172 17 
General 30 30 

RPOL 39 39 
Time propagation 32 32 

General 22 22 

Total (early Sass) 2770 520 

Total (new Sass) 2211 293 

General includes: hyp merging, updating necessitated by new or deleted links, 
redundant link elimination, hyp time consistency checking. 

Figure 3.7   Production counts for KSs in HSP 

HSP knowledge units average about 250 time- smaller 'nan HSII units, or 30 to 50 

[16]   These adjusted counts are roughly the actual counts that would exist if some special facility for declarative 

long-term memory en.sled in HSP. 
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times smaller if the large enumerations are discounted. These smaller units go hand-in- 
hand with a greater degree of data-directed control, as discussed in Section 3.3.1 
below, permitting higher parallelism. It is speculated that smallness of units also has 
benefits for other problems such as performance analysis, but this thesis produces no 
evidence of this. HSII units are as large as they are partly because of a concern that 
increased interprocess communication costs with smaller units may swamp the increased 
parallelism [Fennell, 1975, pp 27-28} But more significantly, in the current uniprocess 
HSII system there seems to be nothing to gain by making units smaller than necessary to 
obtain the desired granularity of directionality control (focussing). 

3.1.6   Mixture of Condition and Action 

The code for a HSII KS is typically a complex mixture of condition evaluation and 
action. Blackboard writing i an occur at any time during KS execution and tends to be 
freely intermixed with Blackboard reading, and with reading and writing of local data 
structures. Even if with some KSs the writing did all happen at a particular place in their 
execution (e.g., the end), there is no feature of the language that would accentuate this, let 
alone enforce it. The opposite is true of HSP: every unit of knowledge (production) is 
strictly partitioned into pure condition (read-only) followed by pure action (writing). This 
difference between the two systems has much to do with exploiting parallelism (see 

Chapter 5). 

3.2   Working Memory 

The short-term or working memory holds the dynamic context of processing for a 
single utterance, and is cleared to begin a new utterance. Both HSII and HSP make a 
distinction be veen Rlobal and local working memory, the global is accessible to all (long- 
term) knowleot. units and is the source of the data-directed control; the local is that used 
within a single knowledge unit and not accessible by other units. The two systems have a 
strong distinction in the ratio of global to local working memory use. 

3.2.1    Local 

HSII KSs have arbitrary, and often quite large, local data contexts made up of integer 
and real variables, arrays, sets, strings and associative structures. These local contexts 

[17] Tha number of HSP production! for lorn« of th« KSi it «fronily dep«ndtnt on th« voe«bul»ry ind jrimmar 
size, and the count« given above ire bsied on i «really aimplified grammar and 100-word vocabulary selected 
from HSII's large grammar and 1000-word vocabulary However, the adjuslad counli ere not «ffeeftd, to th« 

factor of 30 to 50 remains valid. 
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cannot be accessed by other KSs, and thus are strongly distinguished from the 
Blackboard, which can be accessed by all KSs and is used for all KS communication (at 
least theoretically). ^ The HSP architecture is remarkable for an almost total absence of 
any such local data contexts. The only exceptions are a small variable memory which holds 
bindings of variables over the scope of a single production execution, and an even smaller 
temporary arithmetic expression memory. Thus virtually all dynamic data in HSP must be 
stored in the global, shared WM. 

Some examples of how local data structures are used by HSII POM are given below. 
They show how HSII obtains gains in efficiency that are not possible in HSP. 

In POM, part of the condition for identifying a possible vowel segment as a syllable 
nucleus is the existence of a MXN (amplitude maximum) hyp within the time range 
of the segment. Testing this condition requires a Blackboard retrieval operation, 
and must be done more than once tor some segments. Thus, for efficiency the 
condition is pre-computed for each segment and stored in a local boolean array. 

In POM, the complex procedure that identifies syllables operates in the context of a 
syllable nucleus segment and segment alternatives to its right and left (in utterance 
time). Before processing begins, the entire context is read into local arrays (the 
identity of the segments, their ratings, etc.) to obtain big savings on access costs. 

tin the most recent SASS KS, the partial parse trees obtained in attempting to 
parse a language fragment are stored locally in a specially designed data structure. 
Earlier SASS versions used hyp and link structures on the Blackboard, and were 
hopelessly slow as a result. 

The following chapter on time efficiency estimates the efficiency loss HSP suffers by 
having no local WM. 

3.2.2   Global 

Since the total burden for working memory in HSP is to be supported by the globally 
shared WM, there is a requirement for generality and flexibility in the WM element 
structure which is missing in the case of the HSII Blackboard. 

In HSII, Blackboard elements are of only two types: hyps and links; and each has a 

[18]    This it not itrlcily fru» in th« real HSII. Savtnl KS» cm bt eompiltd Into • linfl« modult ind ihart conttxl 

thai Is global to the modulo. In (hi« cat«, ih« local conltxt «till cannot b« acc««t«d by KS« outtid« tha modulo. 

[19]   Again, fhe raal HSII hat axcapiion« in that KSs occasionally aha'a global data atructuraa not in Ih» Blackboard. 
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certain minimal size due to predefined fields. New fields may be added dynamically, but the 
predefined fields are immutable. 

By comparison, elements in the HSP WM have no predefined fields20 and thus may be 
used to conveniently represent arbitrary symbolic structures. Some of the elements do 
represent hyps and links, and these by convention have many of the same fields as their 
analogs in the HSII Blackboard. The remainder of the WM elements (about half of those 
created during the HSP test run) encode data and control information local to some KS. In 
addition to these whole WM elements, KSs also commonly attach extra fields to elements 
representing hyps and links. 

Space efficiency is a potential sore point with WM in the current HSP system, since 
WM was designed for ease of implementation and flexibility rather than efficiency. In HSII 
the predefined fields of hyps and links are tightly packed into fixed fields, with some fields 
as small as a single bit. In HSP there are no predefined fields, so a field identifier must be 
stored with every field value. The values are not packed, so each takes a full word (16 
bits). And finally, the basic WM element is a linked list structure, adding an extra link word 
to each field. The net result of these inef'iciencies is a space ratio (in bits) of roughly 3 
to 1 for HSP vs. HSII elements. Some of this difference is inessential implementation 
difference. But the HSP requirement for generality and flexibility does make it difficult to 
have predefined or packed fields. 

• 

Furthermore, the lack of local working memory in HSP results in more elements in the 
HSP WM than the HSII Blackboard in comparable runs. In the POM runs this ratio was 
about 2 to 1, but in other KSs which make heavier use of HSII local memory (e.g., the new 
SASS, or new MOW using WIZARD), it could be much larger — a full order of magnitude or 
more. For example, the new SASS can in the course of a run easily create 1000 internal 
nodes representing partial parses. If this SASS version were implemented in HSP, those 
1000 nodes would have to be represented somehow as WM elements. 

3.3   Control 

The final aspect of representation to be compared in this chapter is that of control. As 
with the previous aspects, there are some striking differences in the way HSII and HSP 
represent control. We distinguish low-level (intra-KS) control from high-level 
(directionality) since HSII has separate mechanisms for the two forms. 

[20]   Excopi (hat of CREATOR (■ rcfvrtnc« to Ihg production that crotlod it), but that it for diafnoitie us« only. 

\,, .---*•       ^JÜü#* 
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3.3.1   Low-level (Intra-KS) Control 

A primary difference between HSII and HSP is the degree to which data-directed 
control is used. As shown previously in Figure 3.7, HSP has a great deal more data- 
directed knowledge units than a corresponding HSII system. For the POM + RPOL 
configuration the ratio is 500 to 1. And dynamic behavior presents a similar picture: in 
equivalent test runs HSII had only 4 invocations (1 of POM, 3 of RPOL), while HSP had 
1944 production invocations, giving a ratio again of almost 500 to 1. 

With so few invocations in the HSII run, it is apparent that virtually all the control is 
supplied by SAIL control structures within the KSs. For every data-directed invocation 
there were on average 250,000 machine instructions executed within the KS, 
corresponding to roughly 25,000 SAIL statements. 

In the HSP run, each data-directed invocation resulted on average in 2.8 condition 
element evaluations and .3 action element executions. The condition evaluation process 
represents a form of backtracking search control;21 action execution is unconditional and 
sequential. We can thus conclude that the control of condition evaluation dominates in 
HSP. Yet data-directed control has a very strong effect since it intervenes once for every 
3 condition or action elements. 

This high degree of data-directedness in HSP is principally responsible for high 
parallelism (see Chapter 5), and is speculated to also have a positive effect on other areas 
such as augmentation and performance analysis. However, it has a strong negative effect 
on time efficiency due to the high overhead of data-directed invocation (see Chapter 4). 

3.3.2   Higher-Level Control (Directionality) 

Even though of crucial importance in a global perspective, the issue of directionality 
control could not be addressed within the limits of this thesis, and existing HSP systems 
have bypassed the need for scheduling knowledge. But the way seems clear for 
incorporating directionality control into HSP, although its viability still requires 
demonstration.^2 In a pure PSA such as HSP there can be no separate high-level control 
mechanism — directionality must be represented as just more "'ow-level" control. Existing 
productions can be augmented to make them conditional on various properties of the data 
matched by the production condition (e.g., validity, or closeness of temporal adjacency 
match) and on the reliability (strength) of the production itself. Dynamic thresholds used 
by these added conditions can be represented as separate WM elements. Such methods 
are used in HSII SASS [Mostow and Hayes-Roth, 1978], and the HSP translations of SASS 
closely mimic them. 

[21]     However, since vary little searching is actually dona, it becomes mostly sequential 
■ 

[22]     Since  conflict  resolution mechaniams can provide help with directionality control, we might  want  to add 

conflict resolution to HSP. 

"t^a 
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HSII has a sophisticated focussing mechanism [Hayes-Roth and Lesser, 1977] which 
schedules queues of potential KS instantiations and adjusts dynamic thresholds when 
appropriate (e.g., to encourage additional activity in a particular region of the utterance). 
Mostow and Hayes-Roth [1978] argue that proper focussing depends on complex global 
properties of the working memory, and that such properties cannot be described by the 
small set of simple conditions in a production. But it may be possible in HSP to represent 
these complex global properties by WM elements that are constantly updated by special 

productions monitoring changes to the global state.23 Then the task productions (some, not 
all) would be augmented with conditions sensitive to the representation of global state: i.e., 
they would be self-scheduling. The workability of such a scheme in HSP remains ^or the 

time being a source of speculation. 

Summary ' 

No   separate   summary   for   this   chapter   is   given   here. The   Representation   and 
Architecture   section   of   the   Conclusion  (Chapter   7)   includes a   summary  of   the   main 

assertions of this chapter. 

[23]   Though (hese producliont have • special function, they are not to be treated specially by the PSA, They ert 

just mixed in with all the other proouctions. 

■" -l^*** 
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Chapter  4 

Time Efficiency 

This chapter provides an analysis of time efficiency in HSP and a comparison with HSII 
time efficiency. The bulk of the analysis is based on equivalent HSII and HSP 
configurations containing only the POM (syllable recognizer) and RPOL (rating policy) KSs, 
since these two are the only ones completely debugged in their HSP form. The POM + 
RPOL HSP configuration contains 999 productions, classified as follows: POM (90« , RPOL 

(39), Time propagation (32), and General (22). Only a single run of each system ' 311 and 
HSP) was made, and the input was limited to the segments of a single syllable .the word 

"DID") from an utterance. This last restriction was partially motivated by the slowness of 
HSP, but more importantly by the sma;l üddress problem on C.mmp (see Chapter 6), which 
limited the total number of elements in WM and the number of changes per PS cycle. These 
limits could be removed only by reorganizing the HSP system to do more overlaying, and it 
did not seem worth the substantial extra effort.'' 

We begin with a discussioi of several existing efficiency mechanisms in HSP, proceed 
to a direct comparison of execution time in HSII and HSP, and end with the identification of 
some remaining sources of inefficiency in HSP. The possibility of exploiting parallelism for 
time efficiency will not be dealt with here, as it would only complicate matters; the 
following chapter is devoted entirely to parallelism. Thus, for the time being HSP will be 

considered a uniprocessor architecture to be compared with the current HSII. HSP's very 
low multiprocessing overhead (which is, of course, still largely present when running in 
uniprocessor mode) is what allows us to do this. 

fl] Creation of the POM ♦ RPOL HSII configuration for comparison with HSP was not easy Th» POM and MOW 
(word recognizar) KSs arc intermingled within a single HSII module, and (hut MOW had to be painstakingly 

excised. 

[t] General includes: hyp merging, updating necessitated by new or deleted links, redundant link elimination, end hyp 

time consistency checking. 

[3] In what follows, (his test 'un is often referred to simply as "the POM run", though it is actually POM plus 

RPOL. 

[4] Specifically, subpieces of the WM index and perhaps the lists of current changes would have to be overlayed. 

WM elements, productions, and subpieces of the PM index are already overlayed. 

[5]     HSII Ka» evolved (devolved ?) since   1974, the lime of Fenneil and Leaser's  study of parallelism [1977], to 

become a uniprocessor architecture. 
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4.1    Existing Efficiency Mechanisms 

In order to get HSP off the ground at ail it was necessary to incorporate several time 
efficiency mechanisms. Without them, testing and debugging would have been so slow as to 
be impracticable. They all have analogues in the HSII system, and some are closely related 
to efficiency mechanisms in use ir other PSAs. Three of the most significant of these 
efficiency mechanisms are discussed below, including an assessment of the size of their 
effect. 

4.1.1    Production Memory Indexing 

HSP contains a pre-compiled index to all productions in its Production Memory (PM). 
This index takes advantage of the fact that every production begins with a condition 
element applying explicitly to a WM change: the type of change and identifier of the 

changed field provide the first two levels of indexing. Beyond that, three additional levels 
are possible using the first three (presumably fixed) fields of the changed WM element. 
For example, there is a POM production for creating legal next syllable states from a newly 
rated "AL" state, which begins with the two following condition elements: 

<  MOD SST UVLD >    8ST=  < HYP LSE6ST  "AL"  DSEGS/(80S **)  > 

This production is indexed successively through the five levels by HDD UVLD HYP 

LSEGST "AL". In other cases all five levels of indexing need not necessarily be used. For 

example, a production which checks for consistency of times on hyps with a changed end 
time is indexed with only three: MOD ETI ME HYP. 

The function of the PM index is to narrow the number of productions to evaluate in 
any one cycle from (the total number in PM) times (the number of changes) down to a 
much smaller number. Its effect is dramatic: in the POM run there were 375 changes, so 
with 999 productions in PM there would potentially be almost 375,000 productions to 
evaluate. The actual number evaluated was only 1944, representing a savings of nearly a 
factor of 200. In general, the PM index reduces a linear dependence of execution time on 
PM size to a sublinear one. In the POM run there were on average only 5 productions 
evaluated per WM change. In a larger system, say with 10,000 productions, an average 
number of 50 might at first be expected. But since new productions tend to respond to 
different changes than already-existing ones, we can expect instead that the average 
number evaluated per change will be much less than 50 (and perhaps not much greater 
than 5). 

[6] An early decision was mad« to rflly on hand-compilalion of lh« PVi ind«K, \o save the effort of bL.ldinf • 

compiler. This has turned out to be a mistake. Many of the KS bugs that cropped up along the way were due to 

errors In the manual building of the PM index. In relrotpect, building of the compiler looks like ■ relatively 

simple task. 

[7]     This latter Is absent for NEW and DEL changes. 
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The PM index is a filter in the sense used by McDermctt, Newell, and Moore [1978] in 
their investigation of efficiency in the PSA called PSG. The filters discussed there use 
knowleiige from one or more of the fol'owing sources: (1) the occurrence of condition 
elements in productions, (2) which WM elements support which condition elements, and (3) 
the relationship among condition elements of a single production. HSP's PM index uses 
source (1), but only for the first two condition elements of each production: the one 
applying to the change, and the one applying to the changed WM element. Filtering based 
on information about condition elements after the first two is unnecessary because they 
do not normally require any WM searching for their evaluation. This is because of the use 
of explicit WM element references, discussed in the •lexl section. 

4.1.2    Explicit Working Memo y Element References 

In HSP many WM elements contain explicit references to other related elements. This 
allows productions to locate elements relevant to their operation by simply following 
references, beginning at the element which triggered the production. For example, a 
production which wishes to apply some condition to the upper hyp of some linK need only 

bind a variable (say 8UH) to the upper hyp reference, and then use the "=" construction to 
apply a condition element to the upper hyp, as follows: 

...     <  LNK  ...   UHYP/8UH  ...   >     8UH=  <   ...   >     ... 

In many productions, every successive condition element applies to a WM element 
already located by an explicit reference earlier in the condition evaluation. Such 
productions require no WM searching at all for their evaluation. 

The use of such references is quite extensive overall: of 22H condition elements 
encoded in HSP POM, only 2.37. require WM searches for their evaluation. The dynamic 
behavior gives a similar picture: of 54S7 condition element evaluations only 1.27 required 
WM searching; the remainder were applied directly to a single element located via explicit 
references. 

These explicit references are a natural reflection of HSII and the references that 
Blackboard elements contain. But it is an unorthodox feature for a PSA, and there are 
some obvious disadvantages. One of the most serious is the error state th^t occurs when 
some element is deleted while other elements still have references to it. The difficulty 
occurs becau^ ? the linkage bt.>veen elements has been made explicit, and hence 
unconditional. A scheme which relied on repeated searching to establish the linkage would 
not have this error problem, but would pay with longer (perhaps much longer) execution 
time.8 

[8] Perhaps (ha uMlmal» solution lo this difficulty li to design new hardware srchilectures thai will allow the 
luxury of large amounts of (seemingly inefficient) searching. After all, PSs are based on an assumption of high 
recognition-action ratios So maybe their trut benefit will only be realized when new machines free us from 
potty efficiency concerns. 

nuiiiiM riiiTii ■« ■ ■   »      ■■Minn -x_ - 
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The savings in execulion time provided by explicit references is quite lr-ge. It is 
possible to obtain an estimate of the savings using data from the POM run: the number of 
condition elements evaluated (+ and -), the total number of mat'hes of condition elements 
to WM elements, and the size o* WM. The calculation was performed for three selected 
cycles of the POM run. The smallest one (10), a medium one (15), and the largest one (9).^ 
The    results   are   shown   in   Figure   ^.1    in   terms   of   how   much   the   use   of   explicit 
references speeds up execution time 10 

. WM size        Factor speedup provided by refs 

Cycle 10       83 21 
Cycle 15       64 35 
Cycle 9 83 52 

Figure 4.1   Estimated factor of speedup with use of explicit refs 

4.1.3   Working Memory Indexing 

In HS1I, hyps in the central Blackboard are indexed both by level and by utterance- 
time region to allow efficient retrieval and searching. Thus it was natural to include a WM 
indexing mechanism in HSP. The exact mechanism chosen is a two-level association list for 
WM that groups elements according to the values of their first and second fields. ^ For 
WM elements which are representations of hyps, this corresponds to HSIFs indexing by 
level; there is no indexing by time region in the current HSP version. For example, in HSP 
all syllable hyps, which are of the form < HYP SYL ,,. >, can be immediately obtained 
from WM by associating first along HYP and then along SYL 

The effect of such a mechanism is to reduce the amount of WM searching necessary to 
match a condition element. If a condition element begins with one or two fixed fields 
(which contain constants rather than unbound variables), ^ then the search for a match 
can be narrowed down considerably. The effect of this could be very large, except that 
the use of explicit WM element references has already made WM searches relatively rare. 
Also, it must he remembered that WM size is artificially low in these POM runs.    If the 

[9]   By cycls size we mean, roughly, the number of produeiiom evaluated. A more precise definition appears in the 

following chapter. 

■ 

[10]   This calculation was performed assumint no WM indexing mechaniim (see following section). But obviously the 

indexing would be needed and would play a much larger role if explicit references were not used. 

i 

[11]     The resulting requirement that all WM elements begin with two fixed fields is only s minor nuissnee. 

[12]   In practice this is almost always the case. 

»>.- 
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number of KSo increased by a factor of 5 to 10, and utterance length by 10 to 20, we can 
anticipate   as  much  as  a   100-fold increase  in VVM size. 
indexing would be much more efiective. 

13 Under  these circumstances  WM 

Of the 66 WM searches that occurred in the POM run, none were of the entire WM, 2 
were after indexing one level, and 64 were at the second level (and thus most efficient). 

HSP's WM index is related to a PSG filter [McDermott, Newell and Moore, 1978] which 
makes use of knowledge about which condition elements are supported by a WM element 
(called source (2) above). However, it coes not relate WM elements to specific condition 
elements, but rather classifies WM elements according to conditions commoniy tested by 
condition elements (i.e., the values of the fir t two fields). The index must be updated 
when elements are added to or deleted from vVM, bu' t much lower cost than matching 
against all condition elements as in the related PSG filter. 

4.2   Comparing HSII and HSP 

An execution time comparison of HSII and HSP is a difficult task due to many 
differences in the underlying systems, but is nevertheless crucial to a study such as this. 
There are several avenues for cutting through the inessentia', differences. None is very 
satisfactory on its own, but in concert they produce a resscnabiy believable comparison. 
In any event, the attempt at comparison is instructive in its own rip,nt. 

The base data shown in Figure 4.2 is from the : gle run et the POM + RPC. 
configuration operating on input segments for the worj 'DID". The separation of HSP time 
into POM/RPOL could not be conveniently obtained due to the accounting being tied to 
individual productions, at which level POM and RPOL are indistinguishable. The data giver 
a factor of 255 as a starting point for the HSII - HSP comparison. 

[13]   WM size increase should be roughly linear with uHertncs lentth, but no!       (e IO wi!h the number of KSe 
since activity will stretch out over more cycle». 
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HSII (sec)      HSP 'sec)      factor 

POM PRE 1.30 
POM KS    . . 75 
RPOL PRE .76 
overhead ,79 

Total 3.60 917.0 255 

Note: HSII took in addition 5.36 sec for initialization. HSP has no analogue. 

Figure 4.2   Base execution tin as for HSII and HSP 

Since the time comparison is based on a single, quite small run, there must be 
something said about its typicality. First, a single syllable is the largert unit which POM 
operates on, and there is essentially no explicit interaction between syllables within POM 
(that is relegated to other KSs, notably MOW, the word recognizer). Thus ROM's behavior 
on a total utterance is to a first approximation just the sum of its behaviors on sections of 
the utterance centered around each syllable nucleus (vowel segment). Next, we can argue 
that since POM is "table-driven" with respect to the identity of syllables, the same basic 
pathways are exercised for "PID" as for any other syllable of the same length. The only 
source of variation still of concern is syllable length. Its effect is unknown, and may be 
quite large. In fact, we have reason to expect that longer syllables1 would take 
proportionately longer in HSP Jhan HSII — perhaps a half to a full order of magnitude. This 
is because of the combinatorics of the syllable state transition networks, and the fact that 
HSII is relatively more efficient in processing these networks. 

There is the more serious issue of typicality of POM and RPOL versus other KSs. On 
the positive side, POM is one of the largest, most varied of all the KSs, and thus embodies 
a representative collection of KS activities. Yet POM is not typical. Three other KSs 
(WOSEQ, SASS and MOW with the WIZARD procedire) account for perhaps two-thirds of 
the total activity in a ful! HSII run, and they are dramatically different from POM. They 
have much higher ratios of declarative to procedural knowledge (about 10:1 compared to 
only 1.2:1 for POM), though this does not directly affect time efficiency. More importantly, 
these KSs all rely to a greater extent on the efficiency of local working memory and 
control than does POM. Their activity tends to be more repetitive, i.e., many iterations of a 
small computational cycled A direct translation of these KSs into HSP would be a serious 

[14]   Having two or more c isonanla on on« or both sides of the vowel. 

[15] SASS searches a grammar network, MOW-WIZARD searches a atals-transiti i network representation of 
words, and WOSEQ searches for left and right extensions to word sequences that «re both grammatical and 

highly rated. 
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mismatch of task to architecture, yielding, unbearably larp,e overheads for data-directed 

invocation anti global working memory access. If alternative formulations using more 
direct recognition (i.e., fewer, larger cycles) could be found for these KSs, then perhaps 
HSP versions would be viable. Failing that, the time efficiency penalty for HSP would be 

two orders of magnitude or more. 

The HSII - HSP time comr n must be normalized. The first avenue for this consists 
of separate consideration of idividual difference. A numerical factor for each, plus an 
assumption of independence, giv« a single overall conversion factor, although one with 
considerable uncertainty. In the analysis of differences that follows, a factor greater than 

1 indicates that HSP is at a disadvantage relative to HSII. 

(1) Execution rate of_ the underlying machine -- MIPS (million instructions per 
second) rates will be used to normalize for this difference. Fuller [19/6] obtained 
MIPS measurements on a PDP10 (KA10 processor) and C.mmp for a 
price/performance comparison of the two architectures. A figure of .34 MIPS was 
obtained for the PÜP10 running both a general program mix and a set of four 
benchmark programs. A figure of about .19 MIPS was obtained for a PDP11/20 
processor on C.mmp. Fuller estimated a PDP11/40 to be .34 MIPS (at that time 
none were yet operational on C.mmp); subsequent experience has shown this 
estimate to be about 307, loo high. (Delays through the C.mmp central memory 
switch slow the 11/40 down more than expected.) Thus we use a factor of 1.3 for 
normalizing execution rate between a KA10 and C.mmp 11/40. 

(2) Instruction set of th§. underlying machine — In spite of its being a 
minicomputer, the PDP11 has an instruction set which is comparable in power with 
the  PDPlO's.    Data  from  Fuller  [1975] using  four  benchmark  programs   totalling 

%about 3500 instructions gives a PDP11/PDP10 instruction ratio of .9; i.e., fewer 
'instructions were required on the PDP11. Of course, a PDP10 instruction operates 
on a larger word size, and in some applications (e.g., numerical processing of large 
integers) this could force a much higher ratio. But speech understanding involves 
mostly processing of addresses and small integers, so the ratio of .9 shouW hold 

true. 

(3) Small address problem — The PDP11 has only 32K 16-bit words of address 
space compared to 256K 36-bit words on the PDP10. Aside from its drastic effect 
on design, coding and debugging, the small PDP11 address space mandates 
execution overhead in the form of overlay swapping and extra copying. 

HSP gathers statistics on the number of swaps, and the time for a single swap has 
been measured, so this effect can be factored out with reasonable certainty. It 
should be noted that the overhead within L* to reference an overlay dominates the 
Hydra overhead (which amounts to just changing a relocation register). The latter 

takes only 200 microseconds,^7 while the total including L* overhead is 1.8 msec. 

[16]   See the end of Section 4.3.2 for • case in point. 

[17]     A   version »Iso exist» in  the wrileable  microstore of  (he   11/40 C.mmp processor!   which  teket  only  20 

microseconds HSP did not use this version. 
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However, L* optimization could reduce this total considerably. The total swapping 
overhead is 27 sec, or 2.97. of execution time. 

The second form of execution overhead is extra copying of structures from an 
overlay page to a fixed (non-overlay) page for temporary use, followed by 
erasure. There are 3 number of instances of this in HSP, most of them dealing with 
WM element field values. Accounting code was added to HSP to obtain the number 
of such copy-erase instances, with the result being 7970 in the POM run. 
Separate timing of the copy and erase functions yielded a time of 5 to 10 msec for 
the pair.18 Thus the copying overhead was 39.9 to 79.7 msec, or 4.4 to 8.77. of 
total execution time. 

Combining the two types of overhead gives 7.3 to 11.67. of execution time, 
corresponding to a conversion factor of 1.08 to 1.13. 

(4) Operating system — Both HSII and HSP have very little interaction with their 
respective operating systems during the interval over which they are timed, so this 
difference can be ignored. 

(5) Implementation system (language) -- No good comparative data on SAIL and L* 
exist, but if is generally assumed that every level of interpretation in a system 
costs around a factor of 10 in execution lime. Experience with LISP compilers 
generally supports this. It is known that an L* system containing mostly 
interpreted L* code spends half to two-thirds of its time in the L* interpreter. 
This fact alone accounts for a factor of 2 to 3. But the difference between SAIL 
and L* is broader. For example, L* makes heavier use of (relatively) inefficient list 
structures, and L* does virtually all argument-passing and saving of intermediate 
results in a central stack while SAIL makes heavier use of machine registers. Since 
the SAIL-L* difference is rather uncertain, a range of 5 to 10 will be used for a 
conversion factor. 

(6) Degree of kernel optimization — The version of HSII used has a highly 
optimized kernel, having gone through a large number of iterations since the first 
operational version in 1974. A comparison of various primitive Operation timings 
between the Fennell and Lesser system (with locking turned off) and the current 
HSII show across the board improvements of a factor of 2 to 4. The HSP kernel, on 
the other hand is still totally unoptimized. Optimization differences in the speech 
knowledge code (as opposed to the kernel) are minor ~ both HSII and HSP POM 
are only moderately optimized. 

[18] The actual (imes depended on (he type, at follow» (in msec) integer, 2; WME reference, 8, production 

reference, 6; list, 50 or more depending on the length. The composite figure of 5 to 10 i« based on an estimate 

of the frequencies of the various types copied. 

[19] This was intentional. Not only did it keep the implementation effort within bounds, but more importantly It 

maintains a realistic ratio of execution time between various system components. E.g., we can rest assured that 

synchronization overhead in an optimized HSP would be about (he same percentage as in (ha currant HSP, 

because (he critical sections have not been selectively optimized. 
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It should be noted that this kernel optimization category does not include the 
possibility of optimizing HSP by compiling L* code into machine code — that 
difference is covered by the implementation system category above. Examples of 
optimizations that are included are data restructuring and store-compute tradeoffs. 

It is difficult to assign a reliable number, but some improvements similar to those 
obtained for HSII should also be possible in HSP. Thus a factor of 1 to 3 will be 
used to correct for the different degrees of optimization in HSII and HSP. 

(7) Speech knowledge -- Rather than try to factor out any difference in speech 
knowledge content (a nearly hopeless task), the HSII and HSP configurations used 
for comparison were limited to the POM and RPOL knowledge-sources. Since POM 
and RPOL were translated faithfully from HSII to HSP, the two configurations can 
be treated as identical in knowledge content. The differences that do exist are 
insignificant, or else are a reflection of the architectural differences under study. 

(S) Complications o[ parallelism -- As stated at the start of this chapter, HSP 
multiprocessing overhead is small enough to be ignored in the context of this 
comparison. What can't be ignored is the complication of the HSP speech 
knowledge (reflected in longer run times) due to the possibility of asynchronous 
occurrence of constituent subconditions in some condition being monitored. Often 
this means that a production must be duplicated: one for each possible change that 
can make the production true. With an understanding of the structure of HSP POM 
and data obtained from traces of POM runs, it was possible to obtain an estimate of 
the execution cost of handling asynchronous satisfaction of subconditions. The 
result is based on factoring out particular production evaluations and WM element 
creations/deletions which would be unnecessary in a uniprocess system, giving a 
factor of 1.05 for equalizing this difference. This factor is much smaller than for 
the original H3I1 POM. This is because HSP POM does not really handle the same 
degree of asynchrony. For example, it assumes that input is instantaneous, i.e., that 
all input segments are in WM at the start of its execution. 

Figure 4.3 brings the individual factors together. There are no known significant 
dependencies between factors so they may be multiplied to give the total factor of 7 to 

42. 

[20]   The early version! of the HSII POM KS also contained these complications, but most h»ve since been removed 

because they reprssent excess jenerality when running en t uniprocessor. 

v—: 
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difference factor 

(1) Execution rate of machine 
(2) Inotruction set of machine 
(3) Small address problem 
(^1) Operating system 
(5) Implementation system 
(6) Degree of kernel optimization 
(7) Speech knowledge 
(8) Complications of parallelism 

1.3 
.3 

1.08-1.13 
1 
5-10 
1-3 
1 
1.05 

Total 7-42 

Figure 4.3   Factors for normalizing inessential HSP-HSII differences 

A second avenue for comparison covers differences {l)-(6) in one leap by comparing 
some primitives common to HSII and HSP to obtain an overall conversion factor. Evan 
thoußh the two systems have very different higher level orRanizafions, some low level 
primitives are similar. 1 For example, both systems read and write elements in a global 
working memory, differing only in the frequency and pattern of such accesses. Figure 
4.4 shows a list of such low level primitive comparisons. To improve comparability, the 
times for creation and writing do not include the monitoring overhead for data-directed 
invocation. 

HSP HSII 
primitive (msec) (msec) factor 

Create a global WM element 200 3.1 65 
Read a global WM element 

. Integer value 19 .06 320 
List value 21 .6 35 

Write a global WM element 
Integer value 18 .15 120 
List value 27 2.1 13 

Figure 4.4  Timing comparison of HSP and HSII primitives 

[21]   However, «van ihm low level primitiv«! are affected aomewhat by the architecture!. For example, the odd feet 
(seen in Figure 4.4 belcw) that HSP reading and writing of an integer field take about the lame time can be 
traced to the fact that reading is done by matching a variable to the value to be read. Thia adda some extra 

overhead. 
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These prir.^tives yield a reasonable range of factors, with the exception of the large 
ones for reading and writing integer-valued fields. The anamoly could be due to those 
operations being very highly optimized in HSII. In any event, throwing out the large 
factors gives a range of 13 to 65, which compares reasonably well with 5 to 40 for 
differences (l)-(6) in Figure 4.3. There is good reason to believe these HSP primitives are 
less optimal (difference (6)) than the system as a whole. There is one conspicuous 
inefficiency in both reading and writing that accounts for a factor of 2 alo^e, so the factor 
of 1 to 3 used for the whole system may be too small for these primitives. Thus, it is not 
surprising that the range of 13 to 65 obtained here is somewhat larger than 6 to 40. 

The third and final avenue for comparison relies on data from HSC, the C.mmp version 
of HSII [Lesser and Suslick, 1977], which is also implemented in L*. Although HSC. never 
became fully operational, the Kernel was completed and underwent one optimization pass. 
HSC. primitives that correspond closely to primitives in the current HSII system were 
timed, and the results are shown in Figure 4.5. The HSC. timings have locking 
mechanisms factored out. The resulting HSC/HSII ratios represent a combination of 
factors (l)-(6). Since factors U)-(5) are identical for comparisons of HSII with HSP and 
MX., removing factor (6) from the HSC/HSII ratios will allow a confirmation of the first 
avenue of comparison. It is estimated that further optimization of the HSC. primitives 
(exclusive of L* optimization) could reduce times by a factor of .5 to .8, so we use those 
values to remove factor (5). 

primitive 

Create hyp 

Read hyp integer 

Read hyp list 

Write hyp integer 

Write hyp list 

Create linK 

(msec) (msec) ratio ratio x .5-.8 

225 3.1 73 37-58 
5.7 ,06 . 48-76 

13.2 .9 15 7-12 
6.S 1.5 4 2- 4 

15 2.4 6 3- 5 
260 19.1 14 7-11 

Figure 4.5   Timing comparison of H5C. and HSII primitivös 

Taking the lowest and highest points of the individual ranges gives 2 to 76, while the 
range for (l)-(5) in Figure 4.3 is 6 to 13. This is reasonable agreement, if we consider that 
the two primitives with abnormally high factors (Create-hyp and Read-hyp-integer) are 
more highly optimized in HSII than the others. Excluding those two, the range from Figure 

4.5 is 2 to 12. 

The results of the three different avenues are consistent enough that we can have a 
fair degree of faith in the estimate of 7 to 42. Applying this as a correction to the base 
factor of 255 from Figure 4.2 produces the statement that the current HSP architecture is 
inherently 6 to 36 times slower than HSII for the POM + RPOL configuration.   Projecting to 

'5iy«»w*^'''" 
*< 
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a normal mix of syllable lengtha for PCM input adds perhaps a factor of 2 (i.e., long 
syllables are relatively uncommon). And projecting to a more complete KS configuration, 
inexact though it is, adds another one to one-and-a-half orders of magnitude on fop of 
this, giving roughly two to three-and-a-half orders of magnitude total (i.e., 100 to 3000). 

We might justifiably place most of the blame for this large difference onto the 
conventional machine architectures we are forced to use to implement PSAs. T're ideal 
machine for a PSA would combine extremely high parallelism for ra^t recognition with a 
huge memory to accommodate vast numbers of complex productions. However, given the 
speculative nature of such a machine, it is best to return to the question of HSP running 
on conventional machines. The following chapter does address the possibility of running 
HSP on medium-scale multiprocessors (10 to 50 processors). 

4.3   Remaining Sources of Inefficiency in HSP 

Having uncovered this rather large inherent time inefficiency of HSP, the next 
immediate concern is to account for it: first to understand what in the structure of HSP 
makes it so much slower than HSII, and then to gauge whether there is any hope for 
improvement. 

To begin, let us look at the global breakdown of execution time in HSP. Figure 4.6 
shows such a breakdown into six categories for the complete POM run. 

7. total execution time 

Recognition 95 
Production Memory indexing 7 
Successful condition evaluation 21 
Action interpretation 7 
Unsuccessful condition evaluation 60 

Action 5 
Deletion of previous change elements 2 
Making current changes 3 

Figure 4.6   Global breakdown of HSP execution time 

There is nothing terribly surprising about this data. It might perhaps be said that 
unsuccessful condition evaluation takes too large a share, but It Is unreasonable to expect 
its share to be very small, as if the system were non-deterministic. Besides, redicmg the 
607, contribution of unsuccessful condition evaluation by an order of magnitude would give 
only an overall factor of 2 speedup. 
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Although not apparent from the data above, there are several identifiable sources of 
inefficiency in H5P. We turn now to a discussion of them, including where possible ?;'i 

estimate of their magnitude. 

4.3.1    High Degree of Data-directed Control 

It was stated in the previous chapter that HSP uses almost 500 times as much data- 
directed control as HSII (by measure of the number o' data-directed invocations). Although 

that is a positive aspect in some regards, the overhead of this large number of WM- 
mediated control links is very worrisome. The sequencing of control within an HSII KS has 
essentially negligible overhead since it amounts to the sequencing of the underlying 
machine. When this same KS is represented as productions in HSP, the sequentialily of 
control becomes riddled with data-directed invocations. It is not clear that this is an 
inevitable result of any PSA. It is possible to imagine much larger productions than in HSP, 
with considerably fewer data-directed invocations. But an unmanageable explosion in the 

■ P ? 
number of productions seems to go hand in hand with making productions larger. 

In many cases a data-directed invocation is triggered by some permanent change to 
WK/.., jvhich would have occurred whether or not the resulting invocation was desired. 
Other cases which cannot be tied to some naturally occurring WM change require a special 
temporary WM element (often called a pure control signal) to trisger the invocation, 

resulting in extra overhead for the WM element creation and deletion. The overhead for 
a single invocation in HSP is about 350 msec for a "natural" one, or 600 msec for a 
signalled one. By way of comparison, these times are 20-30 times larger than the basic 
HSP WM read time, and are of the same order as the lime to evaluate a production. 

In the HSP POM system, virtually all data-directed invocations could be eliminated by 
making each production, based on the nature of the WM changes in its action, directly 
invoke the set of product: -.is that respond to those changes. Sufficient information to do 
this exists at production compilation time; in tact, it is the same information that is compiled 
into the PM index (and then used interpretively at run time). This would produce a system 
that uses local control exclusively, yet still uses the global WM as in the current HSP. Of 
course openness and 'lexibility would be destroyed (which is why we did not actually do 
it), but the fact that removal of data-directed invocations is possible makes it proper to 
view them as. overhead. 

The   overhead  consists   of   all   the   PM indexing   time, change   element   creation   and 

[22] Since internal disjunctions are not permitted in HSP, alternative subconditions cause • multiplieativ»' Increase in 
the number of productions Permitting disjunctions would solve this but lose most of the perelleli^m, besides 

being aesthetically unpleasant. 

[23] This is a tricky point. Presumably such a 'permanent" change is needed in the context of some future 

compulation or by some other KS 

[24] A pure control signal can also be a iiew fiuld added to an existing WM element rather than a whole new 

element   Such cases were negligible in the POM run 



Page 54 . Time Efficiency Chapter 4 

deletion, plus the time to create and delete pc* control signals in WM. Another less 
obvious overhead is the initial portion of condition t~ iuation for each production which is 
merely reobtaining the context established by the preceeding production {i.e., reading from 
WM into local variablesV A direct invocation scheme could pass the context as parameters 
to the following production, with much lower costs. The cost of this in HSP is hard to 
estimate accurately, but we expect that on average about 20-407. of condition evaluation 
costs are for reobtaining context. Figure 4.7 shows estimated costs of data-directed 
control in the HSP POM run as a percentage of total execution time. The data shows that 
we could expect a factor of 1.4 to 1.8 speedup in converting HSP largely to local control. 

t total execution time 

Creation/deletion of change elements 6 
Creation/deletion of control signals 2 
PM indexing (changes => productions) 7 
Condition evaluation to reobtain context 15-30 

Total 30-45 

Figure 4.7   Overhead for data-directed invocation in the HSP POM run 

Curiously, overhead for data-directed invocation in HSII is not smaller in proportion to 
the 500 times fewer invocations: it amounts to about 97. in the HSII POM run. This is 
because the overhead is dominated by the monitoring of Blackboard changes (of which 
there were about 200/, not by the actuil invocations. 

4.3.2   Limited Local Working Memory 

Given that an HSP KS must use global WM for many functions that a corresponding HSII 
KS would perform in local memory, it is of interest to ask what this costs HSP in time 
efficiency. The obvious extra costs of limited local working memory in HSP are due to the 
relative slowness o* reads, writes, creations, and deletions of WM elements that 
correspond to local operations in HSII. Figure 4.8, which shows numbers of global 
working memory operations In the corresponding POM runs, gives an idea of the scope of 
these extra costs. 

[25] The control signals are often also used for "passing parameters' to the subsequent production, but we assume 
that a scheme for direct (as opposed to data-directed) invocation could pass parameters with negligible 

overhead. 

[26]   Cases of subroutine control are included in this analysis since they are accomplished in HSP by two separata 

data-directed invocations ("call" and "return"). 
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HSU HSP 

Reads 

Writes 

Creates 

Deletes 

2160 
270 

50 
0 

12100 
210 
110 

60 

Figure 4.8   Total    of global working memory operations in the HSII and HSP pOM runs 

This data serves only crudely for this purpose because there are a number of other 
possible reasons for differences in these counts. For example, some of the extra HSP 
reads are due to redundant condition evaluation (see Section 4.3.5). And we would 
expect  HSP to have more writes than HSII, but since the opposite is true there must be 

"5 7 
another factor at work here also. However, we do see more creations/deletions and 
many more reads in HSP, and the bulk of this must be due to HSP's limited local working 

memory. 

Figure 4.9 gives estimated time factors for global versus local working memory 
operations in HSP. The local operations are of course hypothetical, and are based on times 
for simple analogous operations in HSP's implementation language. Creation is 
problematical since it is not clear what the local correspondent should be; what we use is 
the time to create and initialize a small (about 5 element) vector. The values for creation, 
writing and deletion, unlii.^ those in Figure 4.4, include the pa,t of their cost related to 
data-dtrected invocation: the time to create and delete a change element (about 100 and 
50 msec, respectively), plus the time to index into the PM index with the change (100 msec 
for the POM 4 RPOL configuration).28 

[27] One further not» Ihe fact thai the number of crealt« minus deletes is exactly the same for both systems is 

largely coincidental. 

[28] One possibility for reducing these costs is a feature for marking some WM elements as unmonitored so that 
changes to them will not be responded to HSII does have this feature, even though it is needed less there 

(because data that does not need to be monitored will usually be stored locally rather than in the HSII 

Blackboard). 
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global local 
(msec) (msec) factor 

Create 400 4 100 
Read 20 .5 50 
Write 300 .5 600 
Delete 260 2 100 

Tigure 4.9   Rough factors for global vs. local working memory operations in HSP 

If we combine data from Figures 4.8 and 4.9, we obtain percentages of total execution 
time for each of the WM operations, as shown below in Figure 4.10. Assuming for the 
moment that most of these operations could be replaced by corresponding local 
operations, 9 their contribution to total time would essentially vanish because of the large 
factors in Figure 4.9. 

time » in POM total time 
(msec) run (sec) 7. time 

Create 400 110 44 5 
Read 20 12100 242 26 
Write 300 210 63 7 
Delete 260 60 15 2 

Total 365 40 

Figure 4.10   Time contribution of HSP WM operations in the POM run 

However, it makes no sense to convert from global to local working memory use 
without also converting to local control, since data-directed (global) conlrol is built upon 
the global working memory, "luus we must consider the effect of going from global to local 
working memory use in an HSP system which has already converted to local control (as 
discussed in the previous section). This is more difficult to estimate. The global create, 
write and delete would be less expensive than above because of no monitoring for data- 
directed invocation. There would be no deletes and fewer creates because no control 
signals are necessai y. There would be an estimated 25% fewer reads because of no 
condition evaluation to reobtain context. And the total time would be reduced by 30-45% 
from  91/   sec  to  about  570 sec.    Figure 4.11  shows 40%  as the resulting  estimate of 

[29]   Some few would have to remain to provide inttr-KS communicalion. 
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percentage of total time for WM operations in this hypothetical system. Thus we can 
expect a speedup factor of 1.7 in converting an HSP system which already uses local 

control from global to local working memory use. 

time » in POM total time 
(msec) run (sec) 7- time 

Create 300 50 15 3 

Read 20 9000 180 30 

Write 200 210 ■■;() 7 

Delete 

Total 

160 0 0 

235 

0 

40 

Figure 4.1 1   Time contribution of local-control-HSP WM operations in the POM run 

There is another less obvious cost of HSP's limited local working memory. Some WM 
changes that correspond to local HSII operations cause extra productions to be evaluated 
when they are obviously (to the observer, not the system) irrelevant. The exact size of 
this cost is unknown, but it is probably well below 107. of total execution time. 

An interesting piece of HSII history indicates the efficiencies oossible through HSIFs 
use of local control end working memory. The first versions of the SASS KS used the 
Blackboard to store all intermediate grammatical structures, and were found to be 
unbearably slow. A reimplementation of SASS using local data^structures rather than the 
Blackboard was able to do much more processing and yet run significantly faster [Hayes- 
Roth, Mostow and Fox, 1977]. It has been estimated that this new SASS runs tv/o orders of 
magnitude faster than the original Blackboard-based version [Lesser and Erman, 1977]. 
The new SASS has three main activities: creation of nodes representing partial phrase 
hypotheses, searching for already-existing nodes satisfying certain properties, and 
selecting a next node to process. Figure 4.12 compares how long these operations take 
in the actual SASS (using local structures) with an estimate of how long they would take if 

SASS used t.".=> Blackboard.30 Creation in the local version maps into creation of one hyp 
and a couple of links in the hypothetical Blackboard version, local reading into an 
associative retrieval from the Blackboard, and local control sequencing into a data-directed 

invocation. 

[30]   This is not «^»clly the »am« a« comparin| th« new and old vergions of SASS, though th» old version do»i us« 

the Blaekt.    „o. 

— "Vl^-g 
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global local 
(msec) (msec) factor 

Creation 40 .1 400 
Searching 100 .3 300 
Control seque ncing 100 .03 3000 

Figure 4.12   Factors for global vs. local operations in the HSII SASS KS 

These factors are so large that it is not difficult to see how an overall factor of two 
orders of magnitude or more could arise It is not known exactly what proportion of 
SASS's total execution time is covered by the above three activities, but it is certainly 
substantial. And, for example, if the proportion were 507. for the three activities together, 
an overall factor of well over two orders of magnitude could easily result. 

4.3.3   No Declarative Long-twrm Knowledge 

As discussed in the previous chapter, the absence of a declarative long-term memory 
in HSP leads to a number of awkward procedural representations, bince these usually 
involve large sets of mutually-exclusive productions which all respond to a very similar 
WM stimulus, there is potenti,! for a large amount of unsuccessful production evaluation. 
Thus there is a marked effect on time efficiency as well as space efficiency. 

The time efficiency of these large mutually-exclusive production sets is very 
dependent on the PM indexing mechanism. Indexing is sufficient in most cases to select the 
single production to evaluate, essentially nullifying any time efficiency loss. There are a 
few exceptions, the most notable being the POM state transition probability productions, 
where indexing narrows the number of productions to evaluate from 589 down to about 5 
or 10. In any case, absence of the PM indexing mechanism would have disastrous 
consequences for the time efficiency of these large production sets. 

Details of the POM run were analyzed to estimate the time cost of the lack of 
declarative long-larm memory. In the cases where PM indexing was sufficient to select a 
single production, no time penalty was assigned, since that selection is about as efficient 
as a true declarative memory structure would allow. In the remaining cases, the cost of 
all extra unsuccessful production evaluations (and in the case of the state transition 
probabilities, extra WM element creations and deletions) was tallied. The result is that lb7. 
of the total execution time is inefficiency introduced by trie lack of a declarative long-term 
memory facility. 

[31] Note that the PM indexing mechanism ii being used in I peculiar way at a declarative memory structure But 

since it is purely an efficiency mechanism and ii (ranspar*,-;! lo the /epresentation, the claim of no declaratlv« 

long-term knowledge has not been violated. 
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4.3.4   Working Memory Searching 

As discussed earlier, the existing HSP mechanisms of explicit WM element references 
and WM indexing drastically reduce the «.mount of WM searching. But the prospect of 
large increases in WM size that come with more KSs and longer portions of input 
utterances indicates that WM searching is still a problem. As noted earlier, 100-fold 

increases in WM size are quite possible. 

It was not convenient to directly measure in HSP the fraction of time spent searching 
WM, but it is possible to get an estirrv j from other data taken from the PCM run. There 
were a total of 1803 matches of condition elements to WM elements which failed; 
subtracting the number of productions which failed (since there must be exactly one match 
failure per producticn failure, exclusive of WM searching) gives 219 negative matches as 
the cost of WM searching. Since matching is the dominant cost of condition evaluation, and 
assuming all matches cost about the same, the ratio of 219 to the total number of matches, 
5691, gives the cost of condition evaluation due to WM searching as 3.87. of 81A, or only 
about 37, of total execution time. 

It is possible to gat a rough estimate of how WM searching costs will increase with 
larger system configurations. The addition of rew KSs and accompanying Blackboard levels 
(as represented in the HSP WM) will probably not increase the proportion of WM searching 
time, because new indexing structure will be also added to the WM index for the new 
levels, with searching normally necessary only within a single level. However, since there 
is no indexing of WM by time interval, an increase of 10 to 20 in utterance length will 
increase the time for most searches by a similar factor (this in addition to a 10 to 20-fold 
increase in the number of productions evaluated, and hence the number of searches). Thus, 
as shown in Figure 4.13 below, we can expect WM searching to increase from an 
insignificant 37. of total time to a considerable 307.. (This assumes a factor of 15 Increase 

in utterance length). 

' 
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1 total execution time 

Current HSP POM run 
PM indexing 7 
Condition 81 

Searching 3 
Remainder 78 

Action interpretation 7 
Action 5 

Projected HSP run with Urger configuration 
PM indexing 5 
Condition 87 

Searching 32 
Remainder 55 

Action interpretation 5 
Action 4 

Figure 4.13   Proportionate cost of HSP WM searching 

Searching in HSII is done both by kernel functions {e.g., finding a hyp to match given 
characteristic«;, or finding hyps adjacent in utterance-time to a given one), and by the KS 
code itself (e. ,., using a FOREACH set iteration statement). It is not feasible to measure the 
contribution of the latter, but in the HSII POM run there were 14 retrieval calls, amounting 
to 37 of total execution time. 

4.3.5   Redundant Condition Evaluation 

In a paper describing the efficiency mechanisms of the OPS system, Forgy [1977] 
identifies two aspects of redundant condition evaluation. The first, structural redundancy, 
arises from the fact that some condition elements appear in many different productions, 
and thus may be re-evaluated every time they are encountered. The second, temporal 
redundancy, is caused by condition elements being . atched against the same WM elements 
cycle after cycle even though the WM elements have not changed. These two types of 
redundancy are exacily those addressed by the first two sources of knowledge used in 
PSG filters (as cited above in Section 4.1.1). 

The HS? PM index already serves to reduce structural redundancy, and the WM index 
re-iuces temporal redundancy. Furthermore, HSP's explicit WM element references reduce 
WM searching' to such a low level that evaluating a redundant condition element is usually 
not very costly. Thus, there is not a large factor still to be gained in HSP through 
redundancy elimination. An additional factor of 2 or perhaps 3 is all we should hope for. 

There are local cases where the redundancies are still worrisome. But often in these 
cases there are other remedies, such as the following two examples which use 
intermediate storage in WM. 

iV^W1*** 



Chapter 4 Time Effi ^   r, Page 61 

In POM, the state transition prob?bility productions require five piec s of context 
for their operation. A straightforward implementation of these productions requires 
an initial six condition elements to gather the context, and since many of these 
productions must be evaluated for every relevant change (though only one is true) 

there is a significant amount of structural redundancy. A savings was realized by 
restructuring the productions to first gather the context and create a WM element 
to hold it, then on the following cycle react to the ne ■:<, WM element to re-obtain 
the context and produce the result. The fact that ihe context has been packaged 
into a single WM element allows the PM index to discriminate on the context 
information to eliminate most of the false productions. 

For linking up the context of segments around a syllable nucleus segment there are 
two sets of productions, due to the complications of parallelism as discussed in 
Saction 4.2. They can be schematized as follows; 

Pa  :   (  chga  ABCDEFG->  ...   ) 

Pb  :   (  chgb EDCBAFG ->...) 

where chga and chgb are condition elements which test for a change which makes, 

respectively, condition elements A and E true. Pb is needed because Pa may fail at 

E, but E may later become satisfiable, in which case Pa can no longer fire because 

it is conditional on chga, i.e., some change that makes A true. The re-evaluation of 

A, B, C, and D that Pb does is a form of temporal redundancy. If we know that A B 

C D will not in the meantime become falsp, we may add Pa' and redefine Pb as 
follows: 

Pa'   I   (   chga  A B C D    NOT E ->  X ) 

Pb  :   (  chgb E X F G ->  ...   <DEL X>   ) 

This avoids the redundancy. The purpose of A is to store in WM the fact that A B 

C  0 is true. 

Summary 

A factor of 6 to 36 is the inherent speed advantage of HSII over HSP for the POM run. 
The several sources of inefficiency discussed above contribute toward this factor as 
shown in Figure A.M. Factors (1) and (2) are independent since (2) was estimated in a 
hypothetical system wir' had (1) already applied. (3) and (4) are not independent of (1) 
and (2), but their effe^' . are small enough that the dependence makes little difference to 
the combined factor. (5) has a large overlap with (2), so the estimate for (5) has been 
reduced somewhat, but it Is just a rough guess anyway. 

[32]     This is Irua »ven though nona of th« six condition •lament* requires sairchin(. 

1*1 
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source factor 

(!) Data-directed control 1,7 
(2) Limited working memory 1,7 
(3) No declarative long-term knowledge 1,2 
(4) WM searching 1,03 
(5) Redundant condition evaluation 2 

Total 7 

Figure 4.14   Sources of HSP inefficiency with factors of slowdown 

The combined factor of 7 reaches the lower bound of the 6 to 36 range we are 
attempting to account for. Without coming closer to the middle of that range, there is some 
reasonable doubt that all the major sources of inefficiency have been captured. There are 
indeed several known sources not discussed here, mostly connected with the limited 
capabilities of the HSP production language. For example, the inability of a single 
production to deal with data lists of arbitrary length is known to have a significant'effect 
in the POM and RPOL KSs. Perhaps such additional sources have a larger effect than 
anticipated. 

A section on time efficiency in Chapter 7 summarizes the major assertions of this 
chapter. 

V.; 
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Chapter  5 

Parallelism 

The task of understanding speech in real time requires a great deal of computing 
power, and trends in computer technology make multiprocessor machines such as C.mmp 
[Wulf and Boll, 1972] and CM* [Swan, Fuller and Siewiorek, 1977] an attractive solution. 
But parallel machines such as these can be effective only if first there is enough 
parallelism inherent in the task, and secondly the system architecture can exploit it. 
Lesser [1974] recognized the great importance of parallelism for speech understanding, 

and provided a survey of design issues for appropriate system architectures. 

In 1974 Fennell and Leiser built a multiprocessor simulation within the HSII system 
(itself running on a uniprocessor PDP-10) to determine the degree of parallelism, and to 
study interference in Blackboard access [Fennell and Lesser, 1977], [Fennell, 1975]. Even 
though it was not possible to match in HSP the knowledge source (KS) configuration they 
used (most of those KSs were phased out of HSII by 1976), their data provides a useful 

comparison point for HSP in the analysis that follows. 

This chapter examines the way in which HSP exploits parallelism in the speech task, 
and compares HSP with the parallel (Fennell and Lesser) version of HSII. It uses data from 
multiprocessor runs of HSP on C.mmp and from an HSP simulator which can simulate even 
larger numbers of processors. The first section describes where potential parallelism 
exists in the speech task, and compares HSII and HSP in the way they exploit this 
potential. The next two sections describe the general methodology that was necessary to 
obtain HSP timings on C.mmp, and the HSP simulator. Next come two sections presenting 
the results on HSP parallelism and comparison with HSII: one on the overhead for 
exploiting parallelism, one on the degree of parallelism and limits to greater parallelism. 
The final section on hardware memory interference is a side excursion into an interesting 

problem which HSP experienced on C.mmp. 

5.1    The Sources of Parallelism 

There are  -e^   ral -„urces of parallelism in the HSII architecture, corresponding to the 

three-dimension \  structure of the HSII Blackboard: 

(1) Different information levels — The speech KSs that operate at the different 
Blackboard levels can in some cases be executed in parallel. It might be expected 
that the parallelism is as large as the number of KSs. But this is actually quite 
unlikely, since KSs tend to be directly dependent on the results of others operating 
at  nearby levels. For example, a totally bottom-up system would have  no such 

■i^sc* 
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parallelism, while a pure combination bottom-up and top-down system would have 
a potential parallelism of this kind of only two. 

(2) Different intervals of Ure utterance-time -- Information units in the Blackboard 
span intervals of utterance time, and units that are non-overlapping can often be 
processed in parallel. The lowest level of the Blackboard (segmental) has the 
smallest units and hence the most parallelism of this type; the highest level 
(phrasal) has very little since each unit spans much of the utterance. 

(3) Alternative hypotheses -- The errorful nature of speech knowledge requires 
that many alternatives be maintained in the Blackboard for a given time within a 
given level. This creates a combinatorial searching pi iblem, but the processing of 
these alternatives can be done in parallel. The higher levels of the Blackboard 
contain more alternatives than lower levels due to combinatorial propagation of 
uncertainty. 

The HSP architecture exploits these same three sources, but introduces an additional 
source; 

(4) Intra-KS parallelism -- KSs, which are single units in HSU, have in HSP a fine 
structure with productions as units. For example, the HSP POM KS has 906 
productions, resulting in some intra-KS parallelism which is not exploited in HSII. 
The parallelism is not nearly on the order of the number of productions. But it is 

larger than the number of true parallel intra-KS activitiesp it includes a large dose 
of parallel evaluation of conditions which turn out to be false. 

Neither HSII nor HSP fully exploit these various sources of parallelism. For example, in 
HSP it is possible that a production may find multiple matches for one or more of its 
condition elements, 3nd in this case the alternatives are processed sequentially by the 

single production instantiation.3 In HSII, a single KS instantiation can similarly process a 
number of alternatives sequentially. O.ten this takes the form of retrieving a set of 
Blackboard elements according to some criteria, and then processing them sequentially. 

[1] Furlharmor«, (he totally dat>-direcled nature of control in HSP allows (hit »xtr» parallelism to be had almost 

"for free". No explicit operations such a« FORKs and JOINi are required. Control within the HSII KSs it not 

data-directed, so that exploiting this same parallelism there would be more difficult. 

[2]   An example of this in POM is the parallel recognition of the left and right halves of a syllabi«. 

[3] It would be possible, though difficult, to modify the HSP architecture to process these multiple instantiations in 

parallel. However, these case» of multiple firings of a single production may be infrequent. There were none in 

the POM run. But some could be expected with a richer KS set and larger portion of input utterance. 
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Parallelism in the HSU Conlrol Cycle 

In HSIl, the determination of which Preconditions (PREs) should be invoked in response 
to 3 Blackboard change is done as a subroutine (if the kernel function that actually makes 
the change. This is based on a static specification for each PRE in the system of which 
fields of hyps or links, and in which Blackboard level, the PRE is monitoring. As a result of 
a Blackboard change, the PREs that are interested in that change are invoked in parallel. 
Each PRE instantiation may in turn invoke KS instantiations in parallel, but each of these 
will run to completion without further splitting. The cycle is completed when the KSs 
themselves make changes to the Blackboard that trigger other PREs. Note that the PRE 
and KS invocations occur in a totally asynchronous manner. 

Parallelism in the HSP Conlrol Cycle 

The HSP control cycle differs from that of HSII in several important ways. The 
asynchronous aspect of invocation is replaced by a global synchronization imposed by the 
PS cycle. Changes to WM are not made during the firing of a production, but are queued 
and then made at the end of the cycle. And there is no duality analogous to HSII's PRE 
and KS; a production cannot directly invoke another, but can only make WM changes which 
may result in the invocation of certain other productions on the following cycle. 

A cycle begins with a queue of the changes fnat were mfde to WM in the previous 
cycle (the change queue), an empty queue of productions to be evaluated (the production 
queue), and a single active processor. The active processor immediately signals all others, 
and all processors begin the recognition phase. Each processor enters a loop in which it 
repeatedly evaluates a production from the production queue, or if none exists then 
processes a change from the change queue.5 Processing a change consists merely of 
indexing into PM and putting onto the production queue (for subsequent evaluation) all the 

productions so obtained. 

Whenever a production evaluation succeeds (the condition of the production is True), 
its action is interpreted to obtain symbolic representations of the changes, which are 
accumulated in a temporary memory. (The changes are not actually made at this time, thus 
the use of the term "interpretation"). 

Each processor passivates itself as soon as it finds both queues to be empty; except 
for the last processor to finish, which enters the action (or change execution) phase. In 
this sequential stage the single processor first erases the change elements created during 
the previous cycle.   It then makes all the accumulated WM changes of the current cycle, 

[4] These linkages can be very explicit, with Ihe WM chani» being nolhinj more «ban an invocation signal for 
another specific production The point is that the signalling is still done in a data-directed manner through the 

WM. 

[5] Note that change processing and production evaluation are inlermixed. This is done to prevent the production 

qurjue from growing too large  It makes no difference to Ihe results. 

■•.«.-- 
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and   puts   the   change   elements   representing   these  changes   into  the  change   queue   in 
preparation for the following cycle. 

Since it is possible that one or more processors may passivate themselves while 
another is still processing the last change (which may produce additional productions to 
evaluate), there must be a provision for reactivation of processors when that last change 
results in new production queue entries. Thus, with every insertion into the production 
queue a check, is made to see if any processors are idle, and if one is found it is signalled 
to start again. 

There are mutual exclusion semaphores to protect access to the production and change 
queues, the list of accumulated changes, and the count of passivafed processors. The latter 
is used to detect the end of the recognition phase, and also in the above-mentioned 
reactivation check. 

Synchronization of available space lists in shared memory is also necessary. The 
representations of the changes obtained by interpreting actions must go into the change 
queue to drive the next cycle, and therefore oust be created in shared memory so that 
they are accessible by any of the processors. In addition, new WM elements are created 
during action interpretation, and they must of course also be in shared memory. Thus 
action interpretation is protected by a mutual exclusion semaphore. 

5.2   Timing Methodology 

There were a number of difficulties pre-3nted by C.mmp/Hydra for obtaining accurate, 
consistent timings. It was possible to control many of them by various means, but a few 
were insurmountable. The net result is that timings are accurate only to 5 or 107.. Much 
of the special methodology for controlling timing runs is interesting because it reveals in 
an oblique way some important aspects of the C.mmp/Hydra architecture. A partial listing 
follows: 

Two different types of primary memory are in use on C.mmp. About 407. of the 
total is semiconductor memory, and core memory makes up the remainder. In the 
abst ice of memory contention the core memory seems to be roughly 107. faster, 
but as contention increases the core degrades more quickly. Thus no single 
correction factor would suffice. It was hoped that HSP could be run with oniy core 
memory, but it turned out to be insufficient. Even with only one-fourth of the 
semiconductor memory removed from the system there was occasional paging. Also, 
fewer ports aggravated the memory interference problem (see Section 5.6). It 
was possible to largely correct for the different memories by normalizing times for 
each run so that action times are equal (required by the architectural feature of 
sequential action execution). The 4 process run required a 107, correction, and the 
7 and 10 process runs required about 5X. 

The timing facility provided by Hydra does not C'iliver pure user e/ecution time; it 

v.—- 
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includes overheads such as scheduling, paging, and interrupt service for I/O 
devices. However, these overheads were eliminated or minimized by various means: 
running alone on the system, running with enough primary memory to eliminate 
paging, locking HSP processes to disjoint processors, locking the processes into 
core to ensure that they are not paged out, giving HSP processes the equivalent of 
an infinite time slice to eliminate scheduling overheou, and avoiding whenever 
possible the use of processors having high speed I/O davices. 

The five 11/20 processors each run at .55 times the speed of an 11/40 on C.mmp. 
This difference could not be factored out satisfactorily for multiprocessor runs, so 
only 11/405 were used. Even 11/40 processors run at slightly different speeds; 
however, these differences are small, typically less than 17,. 

The total HSP system is quite large, and under normal circumstances (i.e., with 
other users on C.mmp) it is unwise to require that all of it reside in core at once, 
so some of the pages are swapped in and out of the core page set (CPS) as 
needed. But to eliminate this overhead for timing runs, all needed pages are 
permanently loaded into the CPS. 

The timing vers on of HSP uses busy-wait synchronization for all critical sections 
and process signalling. Synchronization mechanisms provided by Hydra have 

unacceptable overheads, especially for large numbers of processes. 

Small differences can be magnified due to a reordering of close events, resulting 
for example in a different pattern of critical section interference. 

5.3   The HSP Simulator 

Since parallelism in HSP was anticipated to be higher than that attainable on C.mmp 
(with a maximiiin of 15 processors), a simulation subsystem was built within HSP to explore 

the consequences of a very large number of processors; i.e., 50 to 100.' The system can 
collect timing data from a uniprocessor HSP run on C.mmp, and then use that data to 
simulate runs with any number of processors. 

The   1   msec grain of  the simulation is detailed enough to include  the short critical 

[6J Hydra policy Bysiem (version 0) semaphoro« (the standard user-level synchronization mechanism), when as*d 

to signal a set of processes, take 90 msec for the first and 50 additional for each succeeding process. (Tnn 

w„g improved in version 1 of the Policy Module, which allows a concurrency of three for such signalling.) 

[7] This number of processors is on the order of that eventually planned for the CM* multiprocessor being built at 

CMU [Swan, Fuller and Siewip ek, 1977], ao the simulations should be relevant to running HSP on CM« In ihm 

future. 

V***" 
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sections involved in accessing the change queue and production queue, and to account for 
quiescence of the multiple processorr at the end of a cycle. It does not include the effect 
of hardware memory interference -- this phenomenon will be discussed in Section 5.6. 
Real runs on C.mmp with up to 10 processors showed almost negligible interference due to 
the critical sections for queue accessing (see Figure 5.10). But the simulation of these 
critical sections was included in case interference would become significant with a very 
large number of processors (it didn't^ 

The  simulator  was  validated by comparison with a series of  mulfi^rocessor  runs on 
C.mmp. Two selected PS cycles from the total of 21 in the POM run were used: a medium 
one (15), and large one (9).   These were chosen because Cycle 9 typically had the highest 

parallelism,  and   15 was  intermediate between 9  and the cycle  with lowest  parallelism. 
Their characteristics are shown in Figure 5.1. 

Cycle 15 Cycle 9 
medium large 

16 36 
110 300 

18 42 
18 42 
47.5 99.3 

« changes responded to 

« productions evaluated 

« productions fired 

* new changes 

uniprocessor time (sec) 

Figure 5.1   Characteristics of the POM cycles used for validation 

The results were compared on the basis of elapsed time, idle time, and the total 
blocked time attributable to each critical section. (These various sources of lost time are 
explained more fully in Section 5.5).  Figure 5.2 shows the results obtained. 

[8]     Though only barely no. See difficulty (4) later in this section. 

[9]   Runs   of   more   cycles  were  deemed unnecessary because  cycle  size  alone is  such a  major  determinant   of 

parallelism.    . 

', 
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caieROry Cycle 15 
n of processors 

Elapsed time 
1 
2 

7 
10 

IdK during recognition 

1 
2 
4 
7 
10 

Real Sim_ 

47.5 48.3 
24.9 25.4 
13.4 14.1 
9.3 9.2 
7.4 7.7 

0 0 
.12 .26 
.35 1.30 

2.97 2.85 
2.90 7.99 

Blocked on action interpretation 
1 0 0 
2 0 .14 
4 .05 .46 
7 .34 1.01 
10 1.77        1.69 

Blocked on 'hange queue 
j 0              0 
2 0                 .001 
4 .001         .01 
7 .01        0 

10 .02        0 

Blocked on production queue 
1 0 0 
2 .002      0 
4 .01         0 
7 .02           .03 
10 .03          .06 

Cycle S 1 
Real Sim 

99.3 99.1 
50.7 52.5 
26.2 26.2 
15.4 15.8 
12.3 11.7 

0 0 
.16 .01 
.58 .71 
,37 .88 

1.25 2.30 

0 0 
.13 .11 
.36 .29 
.98 .81 

1.70 .86 

0 0 
0 0 

.001 0 

.01 0 

.02 0 

0 0 
.01 .002 
.02 .02 
.03 .04 
.05 .10 

Figure 5.2   Validation of the HSP simulator (times in seconds) 
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There are several reasons why exact agreement should not be expected: 

(1) All the difficulties with consistent timings discussed above affect the agreement 
since the simulator works from one set of timings and its output is compared with a 
different set. 

(2) The simulator doesn't include a small amount of overhead in the real system for 
accounting facility hooks. (Those overhe?ds exist even though the accounting 
facilities are turned off during timing runs). 

(3) The simulator does not model hardware memory interference. In spite of 
special efforts to eliminate interference in the real runs, it was not possible to do 
so entirely. 

(4) The "jueue accessing critical sections are too short to be accurately 
repressmed given the 1 msec grain size of the simulator. Also, the length of a 
critical section for removing from a queue varies depending on whether or not the 
queue is err city, but the simulator treats if as constant. The simulator uses 1 msec 
for all queue-accessing critical sections, while the actual values range from A to 
1.4 msec. 

Taking into a< count the reasons for expecting discrepancies, the agreement is quite 
good. Total times are typically 1 to 52 high for for the real run, probably due to (2). Thp 
idle and blocked times are not so close as the total times, but that is not surprising in light 
of (4). Thus the simulator cannot be used as an accurate predictor of idle and blocked time. 

The principal use of the simulator for the results of this thesis was in estimating 
parallelism with more processors than exist on C.mmp (see Section 5.5). Another 
possible use was in estimating parallelism with larger cycles, as would be expected with 
more KSs or longer speech input. This turned out to bt: infeasible since the simulator runs 
too slowly to e:;'>iulate large numbers of processors, even with the relatively small cycles 
of the POM run For example, Cycle 9 (the largest) can barely be simulated for 50 
processors. But since it gets a full 607. utilization during the recognition phase, cycles 
much larger than Cycle 9 can be expected to saturate 50 processors (i.e., get close to 
1007. utilization during recognition). Thus with large cycles more processors than 50 must 
be simulated to probe the limits of parallelism. 
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5.4    Multiprocessing Overhead 

Any software architecture that aims to exploit parallelism in some task domain must 
supply mechanisms for multiprocessing: process creation, scheduling, intercommunication, 
and synchronization. But architectures may differ in the amount of overhead required by 
these mechanisms. Indeed, as we shall see below, HSII and HSP are strongly distinguished 
by the amount of multiprocessing overhead they contain. 

In the HSII architecture there is a necessity for Blackboard lockinR mechanisms to 
maintain data integrity when KS instantiations can simultaneously access the same region 
of the Blackboard; i.e., the same utterance-time interval at a particular level. This 
produces a strong tradeoff between KS execution interference in the Blackboard (high 
with simple locking mechanisms) and locking overhead (high with sophisticated locking 
mechanisms designed to reduce interference). The locking structure used in the Fennel! 
and Lesser system has a dual aspect: whole regions can be locked, or individual 
hypotheses and links. The two aspects are coordinated; e.g., locking a time region 
effectively locks all hyps and links whose specified time interval overlaps the region. The 
region lock involves less overhead than the individual lock, but produces more execution 
interference since more hyps and links are affected. A figure of 277. overhead for 
Blackboard synchronization, largely independent of the number of processors, is quoted by 

Fennell and Lesser.^ 

In contrast to HSII, HSP has no locking mechanism in the global working memory. This 
is possible because of three properties of HSP, ?ll of which are true of PSs in general: 

Explicit separation q£ read activity from write activity in the knowledge 
representation. Productions are all separated into condition and action; condition 
evaluation is a working memory read-only process, action execution is write-only. 

Global synchronization of the recognize-act cycle. Since there is one central 
recognize-act cycle for the entire set of productions in the system, and since all 
active Knowledge in the system is encoded as productions, it is guaranteed that 
reading of working memory will never occur simultaneously with writing. 

HiRh recognize-act ratio.^ This allows actions to be executed sequentially in HSP 
without a severe loss of parallelism (although it becomes severe with very large 
numbers of processors: see Section 5.5). And sequential action execution 
means no synchronization is necessary to prevent simultaneous modification actions 
from destroying a working memory structure. 

[10]   This overhead figure does not include the lot» lime when • proceseor m blocked due lo . Bleckboard lock. loa\ 

lime ie analyzed in Section 5.5. 

[11]   Nole  lhal  whal  we have called action "inlerprelalion" Is here Included under  the "reeognire" perl. The "eci" 

pari is jusl Ihe change execution phase, whore WM changes are actually made. 

'ir-rK*** 
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The synchronization that is necessary in HSP (for change and production queues, 
action interpretation, and action execution) is ail accomplished with low-level semaphore 

operations having negligible overhead. However, each :all on a semaphore operation 
does lake a couple of L* interpretation cycles, at a cost of about .15 msec per cycle. In 
POM cycle 2, for example, this amounted to only 0.67. of the total execution time. And this 
overhead could be almost completely eliminated by simply compiling the L* code into 
machine code. 

This apparently large advantage for HSP in locking overhead must be qualified. HSII 
provides a more complete locking facility than does H3P, In that locks can extend over 
longer intervals of KS activity. (The effect of locking in HSP extends only over a single PS 
cycle). For example, in HSP a production may fire as a direct result ol other productions 
h.wing fired during earlier cycles, and if may take action based on an implicit condition 
{established by the earlier productions) that has since been invalidated. HSII does not 
completely rulve this problem, but it does do better than HSP in so far as its larger 
knowle^pc units permit locking over longer time intervals. 

However, HSII's more complete locking facility may be unnecessary. Lesser and 
Fennell [1977] feel that the basic self-correcting nature of HSII may allow it to tolerate a 
moderate amount of synchronization errors (i.e., actions based on partially invalid data), in 
the same way that it tolerates errors in input or inaccurate knowledge. If this is the case, 
then HSII can use a much simplified locking mechanism (just enough to prev3nt destruction 
of Blackboard structures). This would cause HSII's overhead to drop, but probably not as 
low as HSP's because HSII does not ha1^ the three properties discussed above. If, on the 
other hand, the more complete locking is essential, then HSP must have a more elaborate 
locking mechanism, resulting ;n sharply increased overhead. 

The HSII architecture needs a local context mechanism to maintain for each KS and PRE 
instantiation a local database of relevant changes to the Blackboard. The primitive 
Blackboard accessing routines are responsible for maintaining these local contexts based 
on a specification by each KS and PRE of what classes of changes it is interested in. Each 
PRE has a dynamic context which is continuously receiving records of relevant changes. 
Whan a PRE js instantiated, its static context gets a copy of the current dynamic context, 
and the dynamic context Is cleared. When a KS Instaniiation is Invoked, Its io-al context 
gets a copy of both the static and dynamic contexts of the PRE that invoked it. When a KS 
terminates,  Its  local  context  must  be cleared.   All  this  activity  Is classified  as  system 

[12] Remember we are separat! ■ litm. Isti due lo blocking on a semaphore from the overhead involved whether • 

block occurs or not The former Is certainly not negligible, and is discussed in Section 5.5. 

[13] This is a modest compilation task: the part of Ihe interpreter that would have lo be compiled has only about 

130 symbols (in its PL« form), 

[14] This would seem to require a fundamental architectural >.nange lo HSP, with explicit locking and unlocking 
operations for production actions, and with a delaying of evaluation for productions whose conditions access 

currently locked WM elements. 



Chapter 5 Parallelism Page 73 

overhead, and Fenr.ell and Lesser cite a figure of about 107; but the figure is closer to 
Ibt if we include the local context copying costs that they included under process 
handling overhead. 

Part of the activity included in the local context overhead in HSII should probably not 
hi.v'e been counted as such. Namely, the determination of which PREs fo instantiate as a 
result of a Blackboard change, which is actually part of the evaluation of the 

precondition.1-1 In HSP the production indexing (described in Chapter 4) has the analogous 
function of determining which productions to evaluate based on a WM change, and it seems 
obvious that this should not be counted as overhead. In HSII, this amounts to about 47. of 
overall runtime; thus, deducting it from local context overhead leaves us with 117. as the 
true overhead. 

The HSP architecture avoids the need for any local context overheads. The global 
synchronization of the recogmze-^ct cycle and the absence of any delay between 
condition and action remove the requirement for local contexts. Productions in HSP 
respond without delay fo single WM changes. Thus, the local context of HSII is replaced in 
HSP by a single ceil holding the change being responded to. And the "maintenance" of this 
involves negligible overhead. 

Another form of overhead in HSII is process handling -- the invocation, creation, and 
scheduHng of PRE and KS processes. Fennell ar.-1 Lesser give a figure of 97. overhead, but 
a significant portion of this (an estimated 57.) Is local context manipulation associated with 
PRE and KS invocation, which we have classified under iocal context overhead instead. 

Although the Fennell and Lesser system did simulate the scheduling of ready processes 
to processors, inciudinß deschedulins and context swapping due to Blackboard 

interference, the associated overhead costs were not singled out.^b It is known, however, 
that schedulinß and context swapping costs are minor comoared to the other process 

handling costs of creation, invocation, anu cleanup. ' In fact, this is why process handling 
overhead percentage does not vary much with different numbers of processors, even 
though the number of context swaps does vary from a few to over 900. 

There is very little overhead in HSP for process handling. Process creation is d >ne 
durinß initiali-zation for an entire run, and thus creation overhead has been ignored in all 

the timing data presented.10 Since processes are permanently and individually bound to 
processors, there  is no overhead in scheduling processes  to processors. And since   all 

[15]   Thi« «c<ivi»y has been cilled lh» pf«-pr«tondUion in HSII circlar 

[16]     Tber» IB dala on lh« number of context swaps, but no notion of how lon| • swap tika«. 

[17]     Lessor, privat» communication, 1977. 

[18] For the record, creation of a new L» process takes about 10 seconds plus 02 seconds for each local page 

which must be copied (HSP normally has two). The size of this number effectively prohibits any multlprocessinj 

strategy involving dynamic process creation 

^i 
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blocking   on  semaphores   is  clone  via  busy-waiting (tight  execution  loops),  thnre   is   no 
deschoduling and context swapping going on.^ 

Access to the HSP change and production queues can be considered as overheads 
analogous to HSII process handling: insertion into the change queue as PRE invocation, 
insertion into the production queue as KS invocation, etc. In POM cycle 2, for example, the 
total overhead of this kind was calculated to be only abou 17.. And most of it could be 
eliminated by compiling the HSP interpreter into machine code. 

Figure 5.3 summarizes multiprocessing overheads for the HSII and HSP 
architectures. On this basis alone, HSP has a clear advantage: not only is execution 
overhead dramatically lower, but the system itself is simpler since it needs much less in 
the way of multiprocessing mechanism. However, it must be remembered that HSII is 
providing a more complete synchronization facility (which may or may not be necessary), 
and that this handicaps HSII in the comparison. 

t HSIf 7. HSP 

Locking 27 1 
Local context 11 0 
Process handling 4 1 

Total 42 2 

Figure 5.3   Summary of multiprocessing overhead 

5.5   Degree of Parallelism 

Parallelism in HSII 

The HSII system jsed by Fennell and Lesser for their multiprocessor simulation was at 
an early stage of development and thus did not have a full complement of KSs. In fact, 
many of its KSs were eliminated or replaced by the time of the final HSII system of 
September 1976. Fennel! and Lessor's basic system had 6 PREs and 8 KSs, all operating at 
lower levels of speech knowledge: parametric, segmental, phonetic, surface-phonemic. The 
absence of KSs at higher levels (. ,_,., syllabic, »/ord, arJ phrasal) means that their results 
underestimate the parallelism possible in a full H3II system. . 

[19]   Thar« is in fact no Hydra scheduling of HSP processes going on if all; HSP could run r.n a bar* machine wifh no 

schedul r, aaeuminj fhere wer« some way to gel it initialized and ilarted. 

■■Jij^HWppBff*1 
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Figure 5.4 shows the effective parallelism achieved in a series of HSII simulations 
with increasing numbers of processors. In the 16 processor run the number of runnable 
processes never exceeded 16, so we can conclude that the maximum effective parallelism 
of this configuration is about 4.3. The reason for the slight decrease in effective 
paralielism from 8 to 16 processors is rather subtle, and is not important in this context. 

« of processors 8 16 

7. processor utilization 99 98 95 54 26 

Effective parallelism 0.99 1.96 3.80 4,32 4.16 

Figure 5.4   Parallelism in the 8 KS, 6 PRE HSII configuration [Fennel! and Lesser, 1977] 

To explore the effect on parallelism of additional speech knowledge, Fennell and Lesser 

tested a second HSII configuration with a new PRE and KS operating at the phrasal and 
word levels of the Blackboard. As shown in Figure 5.5 below, it gave an effective 
parallelism with 16 processors of 5.28, up from 4.16. But it should be noted that this new 
KS was operating at Blackboard levels disjoint from all the other KSs, and thus there was 
no increase in Blackboard interference. In a more typical case a new KS would interfere 
with one or more existing ones, causing a diminished gain in parallelism. 

Parallelism in the utterance-time dimension is affected strongly by the rate of data 
input at the lowest level of the Blackboard (in this case, the unclassified segments of the 
utterance). If the system were to truly operate in real time, parallelism in the utterance- 
time dimension would be essentially zero since the system would be forced to complete 
the processing on each unit of data before the next appeared. However, it is not 
unreasonable to assume instead that the entire inpu! is available from the start 
(instantaneous input), thus permitting maximal parallelism in the utterance-time dimension. 
Fennell and Lesser did two simulation runs of the augmented configuration with 16 
processors: one with left-to-right iiput and one with instantaneous input. The effective 
parallelism increased from 5.28 to only 5.6 with instantaneous input; the smallness of this 
increase is bfecause of Blackboard access interference. 

configuration 
16 processors 
8 KSs, 6 PREs 
l-to-r input 

16 processors, 
9 KFo, 7 PREs 
l-to-r input 

16 processors 
9 KSs, 7 PREs 
instantaneous input 

7, processor utilization 26 33 35 

Effect;ve parallelism 4.16 5,28 5.60 

Figure 5.5   Parallelism in three different HSII configurations [Fennell and Lesser, 1977] 
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In the HSII simulations two sources of lost parallelism are distinguished: idle time when 
a processor has no process assigned and there are no ready processes to run, and lost 
.me when a process is suspended and there are no ready processes to take its placed 

the processor. This lost time can be considered to be due solely to Blackboard 
mterference and as such the term blocked time will be preferred in what follows. Figure 
5.6 shows ^ a"d ^cKed time for the various HSII configurations. Note that each 
column.adds to 100, except for rounding errors. 

speech knowledge g KSs, 6 PREs 9 KSt.. 7 PREs 
• ^put form l-fn-r m    **■—1—T  LISlL  l-to-r   instantaneous 
« processors 1 2 4 8 16 16        To  

7. processor utilization 
7, idle time 
7, blocked time 

99 P8 95 54 26 33 35 
1 1 2 14 46 36 34 
0 0 2 32 28 31 32 

Figure 5.6   Lost time in HSII: idle and blocked time [Fenneil and Lesser, 1977] 

Fennell and Lesser also made some simulation runs in which the locking mechanism was 
simply turned off, effectively eliminating Blackboard interference.^ The configuration they 
used was: 9 KSs and 7 PREs, instantaneous input, and 32 processors. The effective 
parallelism achieved was 14.72. Compared with the value of 5.28, this shows that 
Blackboard interference has a major impact on parallelism.21 This value of 14 72 
represents an upper bound for what could be achieved with better locking and scheduling 
mechanisms thai reduce interference. Or, as discussed above, it may be possible to simply 
do away with locking, in which the case the value of 14.72 would be realized. 

Parallelism in HSR 

The HSP POM system can be considered comparable to a 2 PRE 2 KS HSII 
configuration: one PRE and KS for POM itself, and another pair for RPOL (although RPOL is 
small compared to POM). Thus the Fennell and Lesser HSII system had about a factor of 4 
more knowledge content, including a mixture of bottom-up and top-down activity, giving it 
perhaps 2 to 3 times the potential parallelism along that dimension. The HSP runs were 
done with instantaneous input. But since only a single syllable from an utterance was used. 
HSP gives away a factor of about 10 to 20 in potential parallelism along the utterance- 
time dimension. 

[20] This could have resulUd in g.rbi,., buf Ih. ini.r..(in| f.e. i. Ih.< H ...m.d «o m.k. IIHI. diff.r.ne, «o 
overall .yE Um bahav.or, Thi. wa. larg.ly Ih. baai, for F.nn.11 and Laaaar'a (1977J ap.cuMion, m.nllon.d 
earlier, »ha» Blackboard locking could bs eliminatsd 

[21] The difference befween 5.28 and 14.72 i. due lo a combinalion of removin, Ih. inlerf.rence lo.. {.boul 30*), 
removmg (he overhead (again, about 30i), plus doubling the number of proceiaon from 16 lo 32. 
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HSP POM was run on C.mmp wilh a varying number of processors, and the resulting 
data on effective parallelism is shown below in Figure 5.7 for three selected cycles and 
for the total run. Of all 21 cycles, Cycle 10 was typically the one with the lowest 
parallelism, Cycle 9 the highest, and Cycle 15 was intermediate. 

* of processors 1 2 4 7 10 

Total time (sec) 
Cycle 10 
Cycle 15' 
Cycle 9 

all cycles 917 492 281 199 173 

14.9 9.7 7.1 6.8 5.4 
47.5 24.9 13.4 9.3 7.4 
99.3 50.7 26.2 16.4 12.3 

7, processor utilization 
Cycle 10 100 77 52 31 28 

Cycle 15 100 95 89 73 64 

Cycle 9 100 98 95 86 81 

all cycles 100 93 82 66 53 

Effective parallelism 
Cycle 10 1 1.5 2.1 2.2 2.8 

Cycle 15 1 1.9 3.5 5.1 6.4 

Cycle 9 1 2.0 3.8 6.1 8.1 

all cycles 1 1.9 3.3 4.6 5.3 

Figure 5.7   Parallelism in the real HSP POM runs 

The HSP simulator was then used for runs with up to 50 processors, but onfy for 
cycles 15 (intermediate) and 9 (large), with results shown below in Figure 5.8. Note 
that the results for 10 processors do not agree exactly with the corresponding real run, 
but are within 57., and that is as good as could be expected given the difficulties listed in 
Sections 5.2 and 5.3. 

» „.i—i»-—^ »^(«1 
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it of processors 1 10 20 30 40 50 

Total time (sec) 
Cycle 15 48.31 7.65 5.26 4.64 4.64 4.64 
Cycle 9 99.09 11.69 6.85 5.56 4.91 4.91 

7. processor utilization 
Cycle 15 100 63 46 35 26 21 

Cycle 9 100 85 73 59 51 40 

Effective parallelism 
Cycle 15 1 6.3 9.2 10.4 10.4 10.4 
Cycle 9 1 8.5 14.5 17.8 20.2 20.2 

Figure 5.8 Parallelism in many-processor HSP POM simulations 

The results show that even in a configuration with somewhere between 20 and 60 
tines less potential parallelism than Fennell and Lessor's HSII, HSP has higher parallelism. 
With 7 or 8 processors the parallelism is roughly comparable (around 4 or 5), but in HSII it 
oottoms out soon after that, while in HSP it continues to rise an more processors are used. 
The HSP simulations show that for a small cycle the parallelism levels off at about 8 
between 20 and 30 processors, while with a large cycle it reaches 20 between 30 and 40 
processors. z 

As in the proceeding section nn overhead, this HSII-HSP comparison must be qualified 
because of the fact that HSII loc ^g is more complete. HSII is handicapped with lost time 
due to Blackboard access interference and locking overhead. HSP has no comparable 
losses since it operates without explicit locking of the WM. If the HSII locking could be 
safely removed, HSII parallelism would increase by roughly a factor of 3 (at least for the 
configuration used by Fennell and Lesser). If, on the other hand, explicit WM lockinf, had 
to be added to HSP, its parallelism would surely fall (how much is unknown). In any event, 
we expect that HSP would maintain a significant edge (at least a half order of magnitude) 
over HSII in parallelism since HSP exploits intra-KS parallelism as an additional source. 

The degree of parallelism in HSP is affected dramatically by the PM indexing 
mechanism. If no such mechanism existed, and hence every production in the system had to 
be evaluated for every WM change, the parallelism observed would be enormous due to all 
the unsuccessful production evaluations. But in a sense that would be cheating; the high 
parallelism would not be significant in such a grossly inefficient system.   The point is that 

[22]   It was loo costly fo run Ih» simuialor on ill cycles to get data for a total run. 
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HSP has a reasonable level of basic efficiency,     and yet has a high parallelism. 

Since processor utilization during the action phase is determined solely by the number 
of processors, it is instructive to factor that out to see parallelism for the recognition 
phase alone. Figure 5.9 shows this both for the real runs and simulations. 

« of processors 
real runs simulations 

10       10       20       30       40       50 

2 processor utilization 
Cycle 10 100 99+ 99 
Cycle lb 100 99+ 99+    92 
Cycle 9 100 99+ 99 

all cycles 

Effective parallelisr 
Cycle 10 
Cycle 15 
Cycle 9 

90  78 - - - - - 

92  85 83 72 60 45 36 
97  93 97 93 82 74 59 

87  82 m .. _ _ _ 100    99      96 

1 1.9+ 3.9+ 6,3    7,8    - - 
1 1.9+ 3.9+ 6.4    8.5    8.3    14.4 17.9 17.9 17.9 
1        1,9+ 3.9+ 6.8    9.3    9.6    18.5 24.7 29.5 29.5 

at! cycles 1.9+ 3.8    6.1    8.2    - 

Figure 5.9   Parallelism in recoinilion phase of HSP POM 

It was not possible, within the scope of this thesis effort, to get a good estimate of 
HSP parallelism for a full KS configuration operating on a complete input utterance. But we 
can get a rough picture as follows. We expect a 10 to 20-fold increase in utterance 
length to cause a similar increase in the size of each cycle, and little or no increase in the 
number of cycles (assuming instantaneous input). A 5 to 10-fold increase in the number of 
KSs would probably produce increases in both cycle size (2 to 3) and number of cycles (3 
to 4). (The latter because of sequential dependencies between some KSs). The combined 
effect on cycle size would be a 20 to 60-fold increase. 

Cycle  size  is   the  prime  determinant of  parallelism during  recognition.    Cycle   15  is 

[23]   Thor« is «vidonc» (m«n»ion»d in ChapUr 4) lo »uppoH (his claim. HSP •ffiei»ney it comparabl« lo <wo olhsr 

PSAs: OPS and PSNLST. 
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about 3 or 4 times the size of Cycle 10, with an increase in utilization from 78^ to 857.; 
and Cycle 9, which is 2 or 3 times larger than Cycle 15, brings utilization from 857 up to 
937. A 20 to 60-fold increase in cycle size would bring the smallest cycle in the POM run 
up to twice the size of Cycle 9 (the largest). Thus we expect a utilization of close to 1007 
during recognition, at least for 10 processors and probably for even larger numbers. This 
being the case, the determinant of overall parallelism becomes the recognition-action ratio 
and the efficiency of the action pt ase (see below). 

In HSP, lost parallelism can be grouped into idle time and blocked time, as with HSII, 
although they are not really comparable since they stem from different causes in the two 
systems. For example, HSII blocked time comes from the explicit synchronization of 
Blackboard access; HSP does no explicit synchronization, but the implicit synchronization of 
the PS cycle is a cause o- idle time (during both recognition and action). As noted earlier 
this HSP system has only about one-third the knowledge content of the HSII simulation 
configurations. This makes detailed HSII-HSP comparisons inappropriate. However, the 
sparser knowledge content of HSP operates at fewer information levels, so that activity 
per level is not that different in the two systems. Figure 5.10 shows the data on lost 
time from the real HSP runs. The totals should be 100, but fall short for the 7 and 10 
processor runs. This is likely due to hardware memory interference, which existed in small 
amounts in spite of special efforts to eliminate it (see following section). 

« processors 1 2 4 7 10 

7. processor util. 100 94 82 66 53 

7 idle (total) 
recognition 
action 

0 
0 

.  0 

5 
.4 

6 

16 
1 
15 

27 
3 
24 

34 
5 
29 

7 blocked (total) 
action interp. 
queue access 

0 
0 
0 

.2 
.2 
.0 

1 
1 

.01 

3 
3 
.02 

7 
7 

.1 

Total 100 99 99 96 94 

Figure 5.10  Lost processor time in the real HSP POM runs 

[24] Depending on how i{ is measured One useful measure is (• of productions evaluated) « (• fired) * (• now 
changes). This yields a Cycle 15/10 ratio of 146/27 • 5.4 and a Cycle 9/15 ratio of 384/146 • 2.6. A more 
exacting measure might weight these factors differently according to how much »ach contributes on average to 
execution time. Note that the actual execution time ratios (recognition only) are: Cycle 15/10 - 4.3 and Cycle 

9/15-2.1. 

fftmrn 
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The main source of idle time (and of lost time as a whole) is the sequential nature of 
action execution in each cycle; i.e., all processors but one are idle while that one performs 
all the WM changes one at a time. The amount of such action-idle time depends directly on 
the recognize-act ratio, which is 15 overall, but varies from under 3 to 54 across 
individual cycles. These ratios are not as high as would be expected for a more complete, 
more knowledge-rich PS, so action-idle time in HSP may be artificially high.^S Action-idle 
time also rises rapidly with the number of processors, for obvious reasons. The simulation 
data shows that action-idle time for Cycle 15 rises from 2^Z of processor time with 10 
processors to 437. with 50. 

Such a serious drain on utilization leads one to think of system modifications. Two 
possibilities are described here. The first is a simple modification in the way WM changes 
are stored. Currently they are encoded as linked list structures in the same manner as WM 
elements. Adopting the more rigid encoding of a vector (with 2 to 5 elements, depending 
on the type of change) would allow changes to be stored in a fixed array. Then the act of 
deleting all changes from the previous cycle, which currently takes 407, of action time, 
could be reduced almost to nothing (just the resetting of an array index). This would 
increase utilization in the POM run with 10 processors from 537. to 617,. A second 
possible modification is to actually execute the changes in parallel during the action phase 
'but still requiring that action execution not begin until recognition is complete). Some 
synchronization would be necessary during parallel action execution, to preserve the 
integrity of list fields of WM elements, and to control modifications to the WM index 
structure. This synchronization would be a minor part of the total change execution, so 
would not seriously inhibit parallelism. The gain from parallel action execution is roughly 
estimated for the 10 processor POM run to be an additional increase in utilization from 
617 to around 757. 

A second source of idle time in HSP is a consequence of the global synchronization of 
the recognize-act cycle: near the end of the recognition phase of each cycle the number 
of productions left to execute falls below the number of processors, leaving some idle. 
This recognition-idle time is a factor of 5 or 6 smaller than the action-idle time, but its 
relative importance would increase if optimizations of the action phase a? outlined above 
were incorporated. Fortunately, increasing cycle size works in favor of reducing the 
percentage of recognition-idle time, so that more KSs and longer input utterances will 
balance somewhat the negative effect of more processors. For example. Cycle 9 is about 
2 or 3 times, as large as Cycle 15, and has only 17. recognition-idle time compared to 47. 
for Cycle 15. 

The principal source of blocked time in HSP is the critical section surrounding action 
interpretation. This relatively large amount of interference comes more from the 
particular implementation than from the HSP architecture. The architecture dictates only 
that representations of changes and WM elements be accessible by all the processors. The 
current  HSP implementation puts these in a single shared memory  area with  a  mutual 

[25] One expects thai the knowledje in HSP would become more complete primarily through the addition of mor» 
epocialired knowledge. And "more specialired" implios higher recojnition-action ratios, both through morsi 
complex production conditions, and a tarier number of productions which must be evaluated to got the sem« 

number of firings. 
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exclusion semaphore for creation of changes and new WM . .lents within action 
interpretation. One improvemcnf on this is to reduce interference a, dividing the memory 
space for changes into several independently locked pieces. An e\/en better improvement 
comes as a side effect of the action phase optimization discussed above that encodes 
changes as rows in an array. This would dramatically decrease creation time for a change 
representations by eliminating several list cell allocations. And since change creation time 
is currently a major cost in action interpretation, the size of the critical section would also 
be significantly reduced. 

A second source of blocked time, interference in accessing the production and change 
queues, is insignificant for up to 10 processors. And the simulations indxate that it 
remains insignificant (less than 17.) for up io 50 processors.26 Although optim -ition of the 
queue-accessing critical sections is currently unnecessary, they could be 20 times faster if 
written in machine code rather than interpreted L* code. Such an optimization could be 
resorted to if a great many processors were to be used. 

5.6    Hardware Memory Interference 

The problem of hardware interference due to multiple processors accessing shared 
memory is a crucial one for the current version of HSP running on C.mmp. The main reason 
for this is not some feature of the PSA of HSP, but rather the interpretive character of L* 
(the implementation language).27 This section is included here largely for general interest. 

It is a fact of life on C timp that 3 or 4 PDP-11/40 processors can saturate a single 
memory port. The processor-memory crosspoint switch adds some overhead to the 
memory cycle time; but worse, if clusters a number of independent memory modules (each 
with 8K, or 2 pages) into a single memory port. For example, suppose four processors are 
accessing pages in four different memory modules. Presumably, memory concurrency 
across the modules would mean that there is no interference. But if all the memories 
happen to be connected to the same switch port, concurrency across modules helps little, 
and serious interference results. 

Given this fact of the underlying hardware, it would seem crucial for a user of the 
system to have control over the placement of his program and data pages in primary 
memory.   Unfortunately, this is not the case.28 However, a feature was added to Hydra to 

[26]    Although th« •imuialor e»nnol predie» qu«ut accut mUrf«r»nct •ecuralaly, it tuffieM for thii upp«r bound 

of 11 

[27]   There ia a minor conneelion, in that PSA» seam Io require inlerpraler» of aome »ort In Iheir implemenlatlon, and 

Ihus will always exhibit some degree of lopaidedneaa in (heir memory aecaaa pattern. 
i 

[28]     The  ordinal  design for C.mmp included a cache for each proeeaaor. Thf»  would  preaumably eliminate  the 

interference problem. 
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allow a user to find out after the fact which memory port any given page Is In. This 
allowed a strategy of frial-and-error to hit upon a distribution of pages across memory 
ports that would result in negligible interference. 

Any system with a reasonably unconcentrated pattern of memory accesses would 
probably not experience serious degradation on C.mmp due to hardware interference. 
Unfortunately, HSP is close to a worst case. It is constructed as a double-layered 
interpretive system, as shown in Figure 5.11; the production language is interpreted by 
routines written in the L* language, which is itself interpreted by machine code routines. 
Thus a majority of memory accesses must be to the L* kernel (i.e., the interpreter, 
primitives, etc.). Further, most of the remaining memory accesses must be to the HSP 
kernel {production interpreter, etc.). It can be expected that only a very small fraction of 
accesses will be to the real code and data of the system (i.e., productions, WM elements, 

and the WM and PM indexes). 

Productions 

I 
|   Production interpreter 

1 
L* routines 

I 
|   L* interpreter 

1 
Machine code 

I 
|   Hardware of machine 

Figure 5.11   layers of interpretation in HSP 

To investißate the pattern of memory accesses in HSP, some data was gathered with 
the Hardware'Monitor.29 A small (about 10 second) section from the condition evaluation 
phase of an HbP test run was monitored to obtain a profile of memory accesses across the 
entkre user a'Mress space. The monitor sampled instructions at a rate of about 17. for a 
tot»! of 56,000 sampled instructions. Figure 5.12 shows the results. (Note that page 
slü» 0 >s the fU st 4K portion of address sp^ce, and so on). A complete breakdown into L* 
kernel vs HG£P Ujrnel vs. productions and WM elements was not possible because data 
access tor th? U and HSP kernels Pf« lumped together. But it can be seen that SHRPG1 
(slot 1), which contains most of the L* kernel machine code, received 687. of the memory 
accesses,30 And considerably less than .37 of accesses were to productions, WM elements, 

and the WM and PM inde'/es. 

[29] The HarcWt w. vn.io. m y ****. h.rdwa.« d. .ic, .uppo.Ud by ill own PDPU/45, with monMorin« p.-ob.. 

connecled dir»e«ly lo T; , ,F V.rdwtr» H can be used lo make a treat variety of meaaurementi. See [Marethe. 

1977] for further detail». 

[30] An interesting side «ote is »hat about 702 of those (and thus 507 of the total) were to the U interpreter, 

which is only a little over 100 words long. 

v _-«•'■ 's^i*** 
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page shared 
slot 7, page or local 
0 12 Stack page local 

1 68 SHRPG1 shared 

2 1.5 SHRPG2 shared 

3 17 LOCPG local 

4 1 HSPPG shared 
SYSPG shared 

5 <  .1 WMPG shared 
SYS2PG shared 

6 <  .1 HSPU6PG shared 
all PM pages shared 
PMXPG shared 

<   .1     HSPU7PG shared 
all WM pages      shared 
PMX pages 

contents 
L* execution stack and operand stack 

L* kernel code (incl. most machine code) 

L* kernel code and data 

L* kernel data arid HSP kernel data 

HSP kernel code (incl. production interpreters) 
Overlayed L* code 

HSP data (incl. WM index) 
Overlayed L* code (small amount) 

Overlayed HSP kernel code and utilities 
HSP productions 
HSP PM index and related kernel code 

Overlayed HSP kernel code and utilities 
HSP WM elements 
HSP continued PM index shared. 

Figure 5.12   Percentage of memory accesses in HSP by page slot 

This data suggested that memory interference would indeed be a serious problem as 
long as SHRPG1 was shared among processors. Partly by a stroke of good luck, SHRPGI 
contains nothing that has to be shared, so it was possible to turn it into a local page to 
give each process its own copy. From the data in Figure 5.12 it can be seen that once 
SHRPGI is made local, a staggering 977. of memory references are to local pages. Thus, if 
C.mmp could be run with each processor's three local pages in a separate memory port, 
only 37» of each processor's memory accesses could possibly inleifere wi'.'' other 
processors, and memory interference would be essentially non-existenf. In »ft He« this 
ideal binding of pages to ports was not attainable. But with k I tile trial-anc-üt'■:*■ 'S was 
possible to keep more than two separate copies of S'-iKPCl vV u ending D •'?■ ^«e Mtf«€ 
port,      and this was sufficient to keep interference «it " riejlrf ale Jew 

To demonstrate the seriousness of the inter fererce pro' '-»nn, H5P fU's nn H.mmp wer1? 

[31]   In on« run six ■tfsmplt wnra nocessary. 

[32]   The data given below in Figure 5.13 show thai (wo ce^itl "* SW*?^! than"« ■ oori gives >.n(y about ''t 
degradation. 

■XrjC 
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■       „f   QURPGI     Fipure  5.13   shows   the   results. Two 
macle   without  the  '"^ual copies of  SHRpG •   F gU s ^ ^ mt with 

processors sharing SHRPG1 5how
h ^'y^^fand 10 processors, additional processors 

10 processors. Note that somewherbe^^^^^ io  interfering  processes   are 

arhiallv   bepin    o    ncrease   total   time,    MISO 
consilrabVtess el.ective Ihan 4 non-intader.ng ones.   

# processors 1 10 

Time (sec) QI?    492    281    199    173 
With SHRPG1 copied 917    432    «l    i 
Without SHRPG1 copied 917    513    412    321    353 

Factor of degradation due ^ 
to interference i 

Figure 5.13  D,,^''- »' HSP execuU.a tao dU. to h.rdw.r. m.mory intortoren«^ 

Bu. what ...«. wouid opU.izalion "^^^^^^yp'^l^.etHn.f^ach.n: 
pages? Removing Ihe L. inlerpretahon level ^ ""P'1 ^'™^ d,f.. productlons, and 
oödä would result in . higher percent^ |evel   ol   Hsp 

WM slructures (currently '"''"'"^^J^^f^^e^o the HSP Kernel code being 

^t-^^^^t^ or WM element There 

would still be much to gain by copying code pages. 

Summary 

No separate sugary tor this chapter appears here. See the section on paradells. to 

the conclusion chapter (Chapter 7). 

zr;.rr.r;.rÄtrr..»"r.rÄ. »..- > - - 
they .r. mix-d with L. Kernel d.«. .cc... in th. d.t. of Ih. f.gor.. 
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Chapter 5 

The Small Address Problem 

A single C.mmp processor, being a 16-bil PDP11, can only access 54K bytes in its 
address space. But ample amounts of primary memory are available on C.mmp, around '-vo 
million bytes. This mismatch leads to the problem of how to obtain access to more memory 
than fits in the address space, and we call this the small address problem. As discussed in 
[Wulf and Harbison, 1978], the hardware designers were pretty much forced into this 
problem, as it seems to be inherent in any multiprocessor built from si.iall machines. It was 
originally hoped that large systems could be decomposed into a large number of processes 
each addressing only a small amount of memory, but experience on C.mmp has not borne 
this out except in exceptional cases. 

To circumvent the small address problem, Hydra and the C.mmp hardware support a 
partitioning of every processor's address space into 8 slots, each of which holds one page 
of 8K bytes. Relocation registers provide a fast way of swapping these pages in and out 
of the slots in the address space. The time required for a swap of one of these pages, 
including operating system overhead, is only 20 microseconds. This fast swap time makes 
possible various overlaying schemes that would be infeasible on a more typical computer 
system forced to swap to secondary memory/ 

The C.mmp version of the implementation system L* [Neweü, McCracken and Robertson, 
1977] provides some support tor dealing with the small address problem.3 Within L*, the 
four page slots which make up the upper half of a processor's address space can be used 
for swapping pages. The current version (D) of L»C.mmp binds every overlay page in a 
system to a fixed slot/' Overlays defined as lists of pages (at most one page for each of 
the four available slots) can be inserted inio the address space and then later removed 
(returning the previously addressable pages).   This overlaying operation can be used not 

[1] Thig is i microcod«d function of lh« op«ri(inj tyBUm. Tht prtvioui nor>-microcod«d vtrtion took 200 

microsacondt. 

[2]     Use  of  the relocation rBfiBUr» ia »nalogour in tomt rasptcti to "baa* ragiatar" uaa(« on 360-370 •tyl» 

macSmoB 

[3] A general Hydra address-Bpace-inanagemenl facility haB been designed (Hydra group, 1977], but there i« a* yet 
r.o experience with its use Several large non-L« syslema that hav» been built en Cmmp/Hydra have implemented 

their own specialized overlaying mechanismB. The Hydra kernel itsslf ia a prime example of this. 

[4]    Of the lower four page slots, Hydra claims one and L« the other three ~ they muet not be overlayed. 

[5] Version A, which allowed pages to float into any unused slot, ran afoul of the re»ultin| complication« and we« 

abandoned. 
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only for large, modular subsystems, but also at the level of individual routines. In fact, a 
sizeable number of the routines in the basic L* system exist in overlays, and so must be 
swapped in when executed and then back out. Another overlay operation is provided to 
swap in an overlay without first preserving addressability of the overlayed pages (I.e., a 
replace operation rather than an push). This is useful for iterating through the multiple 
pages of a large data structure addressed through a single slot. 

The cost in execution time of these overlaying mechanisms is not severe. In a run of 
the HSP POM+RPOL configuration, only 37. of execution time was taken by overlay 
swapping. A second form of execution overhead necessitated by the overlay structures is 
time to do temporary copying of data structures into the fixed portion of the address 
space7 to preserve their addressability during conflicting overlaying operations. This 
overhead amounted to only another 4 to 97. in the above-mentioned run. Thus execution 
overhead is not the problem. 

The real essence of the small address problem is what it does to design, coding and 
debugging times. Working with a system requiring more than just a few overlay pages 
becomes quite complex. Correctness of page accessibility assumptions must be 
painstakingly maintained. The absolute page boundaries cause severe allocation problems 
for large, growing data structures. And some attention must always be given to limiting the 
amount of overlay swapping (though, as noted above, that is less important). 

The debugging difficulties stem from this: if, while accessing data on an overlay page, a 
routine makes a mistaken assumption about which pages are currently addressable, there 
is fundamentally no way to detect the error.® The result will be a totally unpredictable 
error, and the symptom may not appear until long after occurrence of the error itself. 
Such errors are notoriously difficult to find, and they occur with dismaying frequency, at 
least until the programmer has learned to be careful about such things. 

The small address problem is serious, perhaps even crippling, for many large systems. 
It thus comes as good news that the HSP architecture provides some help. The basic 
idea is this: WM elements are spread across multiple pages to be overlayed In one slot, 
and productions in multiple pages in another slot. Then once the small address problem tws 

[6] This was without tha microcodad oparalinf lystam function, but that matter» litttt tinea ovarhaad within L* 

dominated. 

[7]    Tha lower four pa|et of tha addraat ipaca ara called fmed tinea thay cannot ba ovarlayed. 

[8] If tha data item it accattad via an L» external name, tha error will be caught at 'compile-time' tince external 

name dictiorrariet and overlayt are tied together But many data tccettei in the course of program execution 

are not via external namat. 

[9]    At what cuiit in extra mental load? 

[10] HSII was too large to fit on its PDP10, and thit problem was tolved by overlaying tingle KSs (end tmalt 

groups) from a secondary ttorage device (drum). Tha HSII architecture thus helped solve that problem, but such 

a solution would not work on C mmp since the KSs ara too large to fit at once into the tddreau space. 

•mm 
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been solved for the HSP kernel,11 the system can be grown indefinitely (barring other 
limits) without further concern. The characteristics of the HSP architecture that permit 
this ar-3: (1) the existence of all long-term knowledge in the form of small, self-contained 
units (productions), and (2) the existence of a single global working memory, again with 
small units. (WM elements do reference each other, but this is handled by a special "large 
address" data type which identifies a page in addition to an address). Theoreticall> the 
address space slots for productions and WM elements need only be large enough fcr a 
single unit, but larger slots reduce overlay swapping.12 A large slot is particularly 
important for the WM elements since many of them are accessed for every production 
evaluated.   In HSP a page slot can hold roughly 50 to 200 productions or 15 WM elements. 

Since a key part of HSP's solution to the small address problem is a distribution of 
large, dynamic structures across multiple pages, there are formidable allocation problems. 
HSP has so far adopted simple and inflexible solutions. For example, the way in which the 
PM index is spread across pages is dependent on prior programmer knowledge of the total 
set of productions to be included in the system. Also, the distribution of WM elements 
across pages is controlled via a conservative maximum number per page, ignoring the 
actual amount of space used. The situation of running out of space on some page during 
creation of a WM element cannot be handled. These and similar problems must be solved 
before HSP can be considered adequate for general use as a PSA. Their solulion, though 

difficult, seems straightforward. 

[II]    A •ub»t»n»i»l l*ak in iUelf |Jv«n iU «iz* »nd »h» tilt of lh« und«rlyin| L« ty«»»m. 

[12]   The UM of condition «nd .e»ion proc.durti ilfo ■rfWf for lar|tr tlo«! iinet • procdur. ind ■II production« 

utinf il mutl ba eoncurronfly »ddrttMbl« 

 SP. —"■ "Mt*** 
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Chapter  7 

Conclusion 

The cenlral goal of this thesis is to evaluate the desirability of using a production 
system architecture (PSA) to implement a Hearsay-IHike speech understanding system. 
The approach of the thesis involved implementation of a PSA (called HSP) on the 
C.mmp/Hydra multiprocessor system, and translation of a body of HSU KSs into productions 
for HSP. The final evidence is rather ragged in several respects, but this was anticipated. 
The large size of the HSIl-to-HSP KS translation effort, and the instability of Cmmp and its 
operating system Hydra are two of the main causes of this. Another is the inherent 
difficulty of comparing two systems as complex as HSII and HSP. 

The promise of PSs for speech understanding was introduced via a list of characteristic 
implementation problems (see Figure 1.1). How has HSP fared with respect to the 
problems? Most of the evidence deals only with the first four problems: adequacy of 
representation, space efficiency, time efficiency, and the small address problem. No 
systematic study was made of the remaining six problems: error, directionality, 
augmentation, testing, debugging, and performance analysis. This does not reflect the 
relative importance of the problems. Rather it results mostly from time constraints. Also, 
the decision to maintain close comparability of HSP and HSII prevented free exploration in 
HSP of solutions to many of the problems. 

The main body of this chapter is structured as a list of assertions based on the thesis 
research. Following the assertions, a short section brings together the various assertions 
for an overall conclusion taking their relative importance into account. Next comes a 
section discussing what the next steps should be if the evaluation of a PSA for HSII were 
to be continued. Several questions have emerged as the important ones still to be 
answered.   A final section summarizes the contributions of the thesis. 

7.1   The Assertions 

The assertions are organized into five categories, roughly paralleling the division of 
the thesis into chapters. The exception is that representation and architecture are 
considered  together  here.1   The  assertions are stated  in a strong form.  A discussion 

[1] This ia appropri»»» bacauaa arehiUe^ural iaauas hava an impact on tha rapraaanUJion of apaach Knowl»d|a, 
even »hough »he issue» may have been setlled without regard to »hia impact. For »xampla, »ha uaa of •xplici» 
condi»iona on changei (discussed below as assarlion 4) was mo»ivB»ad purely by architectural conaideretiont. 

Vet it five« extra expressive power for knowledge representation. 

mH^m-^t^m 
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following each assertion explains it and summarizes the supporting evidence. In. cases 
where the evidence is weak, the assertion is qualified appropriately. Figure 7.1 gives a 
preview. 
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Representation and Architecture 

1. HSP productions are adequate for representation of all HSU speech knowledge. 
2. The adequate architecture of HSP is simple. 
3. Translating HSII declarative knowledge to HSP creates problems of multiple use. 
4. Explicit condifionality on changes is a strong feature of HSP's architecture. 

Space Efficiency 

5. Procedural HSII knowledge decreases slightly in size when translated to HSP. 
6. Declarative HSII knowledge increases in size by up to half an order of magnitude. 
7. Total HSII knowledge increases in sue by up to half an order of magnitude. 
8. HSP requires a much larger global working memory than HSII. 

Time Efficiency 
* 

9. The implemented time efficiency mechanisms in HSP are critical for its viability. 
10. The time cost of HSP relative to HSII is at least two orders of magnitude. 
r I   ' ocal working memory and control are the prime sources of HSII time efficiency. 
12. implicit pointers between WM elements in HSP greatly enhance time efficiency. 

Parallelism 

13. HSP exploits parallelism with lower overhead than HSII. 
14. HSP achieves higher parallelism than HSII. 
15. The limiting factor for !;3P parallelism is sequential action execution. 
16. Hardware memory interference does not seriously limit HSP parallelism. 

Small Address Problem 

17. The HSP architecture aids solution of the small address problem. 

Figure 7.1   Assertions of the thesis 

Before beginning with the assertions, we summarize briefly what the assertions are 
based on. For more information on the supporting evidence, consult the appropriate 
chapter in the body of the thesis. 

Twelve HSII KSs were translated to HSP productions, and two of them were singled out 
for  particularly thorough translation: POM, which recognizes syllables from phone-sized 

1 
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input Degments;^ and RPOL, which maintains the interrelationships of hypothesis validities. 
These translations provide the basis for comparisons of representation in HSII and HSP, 
notably for adequacy and space efficiency. The space efficiency comparisons are done 
separately for declarative and procedural HSII knowledge, since they behave differently 
under translation to HSP. Some of the comparisons are projected to include KSs that were 
not translated, on the basis of moderate understanding of how these untranslated KSs are 

structured. 

Assertions about important features of the HSP architecture are supported by 
comparisons of HSP with three related PSAs: PSG [Newell, 1972], PSNLST [Rychener, 
1976] and OPS [Forgy and McDermott, 1977], which represent an historical progression in 
development ai CMU. These comparisons are also relevant to the assertions about time 

efficiency, since this is always a major concern for PSAs. 

Equivalent HSII and HSP configurations containing only the POM and RPOL knowledge- 
sources were created and run on the same input (HSP being run in uniprocessor mode in 
this case). The data from these runs, once corrected for differences in the underlying 
systems,^ support assertions about time efficiency. 

Assertions about parallelism are based on multiprocessor runs of HSP (with the same 
POM + RPOL configuration), with up to 10 processors on C.mmp. Comparisons with HSII 
use data from the multiprocessor simulation of HSII by Fennell and Lesser, although their 
KS configuration is not directly comparable to HSP's. HSP parallelism is estimated for 
larger KS configurations, based on data from the existing configuration and knowledge of 
HSP's internal structure. A special HSP simulator was built and validated against the real 
multiprocessor runs. It collects data from uniprocessor runs and uses it to predict 

parallelism for larger numbers of processors (up to 50). 

Now we begin with the assertions: 

Representation and Architecture 

1, HSP productions are adequate for representation of all HSII speech knowledge. 

The   basid  evidence  for  adequacy4  is  that   a  large  number  (12)  of   HSII   KSs  were 

[2] POM wBi chosen tueaui« it it on» of 1h« moil comploK »nd v»ri«d of all «h« HSII KSt. U h«t «wo inUrm.di«»» 

(•valt of ropr»BBn(»tion b»>w»on input »«tiMnli »nd iyllabtat, ind roujhly ■ do«n proe»«tln» ■(■(•■, iom« 

limpl« and aoma quit» complex in Ihemselve«. 

[3]   la., L. is »lower than SAIL. 

[4]   By adequacy wa do not mean theoretical adequacy (which it trivially preaent), but rather aomathin| wa mi»M 

call "representational practicality". We alao do not mean to include time efficiency. 
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translated to HSP productions. There are nearly 20 other KSs which have been used at 
some time throughout HSII's development, but a moderate acquaintance with them has 
turned up no reasons to doubt HSP's adequacy. Efficiency is another matter (e.g., see 

assertion 11). 

There were several minor difficulties encountered in the KS translation process, for 
example: iteration over WM element list fields, controlling duplicate actions, tallying events, 
and redundant arithmetic expression evaluation. Yet these difficulties are not serious 
enough to constitute a refutation of HSP's adequacy. Most of them could be solved through 
design iteration of the HSP architecture, without deviating from basic PS philosophy. 

HSII KSs do a significant amount of simple table lookup from local arrays containing 
long-term knowledge. This might at first seem to cause a representation problem for HSP, 
but actually an array translates cleanly into a mutually exclusive set of productions, one 
for each entry. Direct indexing to select an array entry in HSII is essentially the same as 
selecting the correct production from the set in HSP. In other words, a PS is really a 
large, complex table lookup, while an array access is just an optimization of the lookup 
process that is possible with a highly uniform set of productions. However, a PSA is overly 
general for simple table lookup; the resulting space and time costs are discussed below 
under assertions 6 and 10. 

The adequacy of HSP for speech understanding provides an additional data point for 
the broader question of adequacy of PSAs for artificial intelligence applications. More 
extensive evidence for adequacy has already been reported by Rychener [1976], in a 
study of six classical artificial intelligence programs. Although HSP and PSNLST 
(Rychener's PSA) differ significantly in their details, they are essentially the same when 
viewed from the world of artificial intelligence languages as a whole. Rychener's tasks 
span a large part of the domain of artificial intelligence: algebra problems, learning 
nonsense syllables, puzzles, chess endgames, natural language, and blocks manipulation. 
Yet the speech understanding tack of HSP has some characteristics that set it apart: (1) a 
rich set of relatively independent knowledge sources, (2) each of which has a sound 
theoretical basis, providing lexicons of basic entities and rules relating entities, ant' (3) the 
large direct recognition component, i.e., no need for expensive serial reasoning. 
(Characteristic (2) is responsible for the large amount of knowledge which is conveniently 
represented in table form). 

As for adequacy of PSAs in general for the speech understanding task, there can be 
little doubt. HSP is a simple PSA (see assertion 2), doing without several features that 
give an architecture more power. Further, the few idiosyncratic features that HSP does 
have do not affect power of expression so much as efficiency, which is beside the point 
for adequacy. Thus we can conclude that HSP's adequacy must extend to PSAs in general. 

2. The adequate architecture of HSP is simple. 

This assertion is of interest only in the context of assertion 1. Simplicity without 
assurance of adequacy is trivial. 

Contrary to standard architectural pi dctice for PSs, HSP has no conflict resolution; on 

— -—  '■— ■" '  mmmmmm><~ i*"—; •b^nxfa"— 
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each cycle if fires every true production. This permits a natural expression of the 
multiple, independent KSs that come from HSI1 and the speech task. Perhaps more 
importantly, it allows much greater parallelism: while PSG, PSNLST and OPS respond to 
only a few changes and fire only a single production each cycle, HSP can respond to 
hundreds of changes and fire a hundred productions or more. Such a feature could 
seriously impair a PS's ability to switch focus rapidly in response to a novel situation or 
new external stimulus.^ But this does not seem worrisome for HSP since most of the 
multiple firings are operating in parallel on separate levels or time regions of the 
representation of the speech utterance. 

The other side of the coin from responsiveness is stability: the ability of a PS to 
maintain a continuity of action over time. According to Rychener [1976] and McDermolt 
and Forgy [1978], conflict resolution also plays an important role in stability. In faqt, 
Rychener ranks event order (a conflict resolution principle which favors those production 
instantiations based on more recent WM changes) as the most essential feature of PSNLST, 
being used particularly for coordination and sequencing. In the absence of conflict 
resolution, HSP must occasionally resort to a somewhat inflexible mechanism called an n- 
cycle delay. This involves a chain of productions that waits for other activity to finish by 
marking time for a certain fixed number of cycles. 

HSP permits neither disjunctions nor negated conjunctions within production conditions. 
(Negations of single condition elements are essential ann of course permitted). These 
restrictions simplify the production interpreter without seriously affecting adequacy of 
representation. Disjunctions or negated conjunctions can be eliminated from a production 
by splitting it into several productions, at the cost of some decrease in space and time 
efficiency. This splitting of disjunctions was frequently necessary in HSP, usually to 
accomplish iteration over a list field or a WM element. But this form of iteration is 
unnatural for a PS, having resulted from mimicking of HSII. Splitting of a negated 
conjunction was necessary in only a few cases, but the result was typically a complicated 
profusion of productions. 

HSP has no mechanism for special case inhibition; i.e., preventing a true production 
from firing when another production representing a special case of the first one is also 
true. Such a mechanism would have complicated the production interpreter and probably 
caused a serious reduction in parallelism. Doing without special case inhibition is an 
inconvenience. Either the more general production must be augmented to make it 
complementary to the related special cases, or special productions must be added to 
detect when both general and special case productions fire and favor the special case 
result. 

HSP's production language is at least half an order of magnitude simpler than HSII's 
language (a subset of SAIL). This conclusion is based on a comparison of primitive counts, 

(5]   See, for example, »he importance McDermoH »nd Forjy [1978] »ssijn to lueh responsivenete, which they cell 

sensitivity. 

[6]     The time cost is due to redundant evaluation of the same condition element in different productions. This cost 

is kept small by PSA efficiency mechanisms discussed under assertion 9. 
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number of data t>p-«, and sizes of runtime support and compilers. The extra complexity of 
SAIL permits efficiency of internal KS computation {see assertion 11). 

3. TransLatiriB HSII declarative knowledge to HSP creates problems of multiple use. 

A basic feature of the HSP architecture is the absence of any form of declarative long- 
te.'-m memory. Thus all long-term knowledge must be encoded as productions. Since each 
production specifies under what conditions its piece of knowledge is to apply, there is a 
problem with using that knowledge under different circumstances/ In some cases the 
problem can be solved by merely duplicating the knowledge, with a different production 
for each different use. This was done frequently in the HSP KJs, but will not extend to 
systems of growing complexity where multiple use can be expected to increase. 
Subroutines of productions provide another solution to the problem of multiple use. But 
subroutines require a high degree of similarity of the uses, plus rigid conventions for 
communication. A third, somewhat novel, solution employed in HSP is to deposit knowledge 
temporarily into WM whenever there is a reasonable expectation that it may be useful. In 
WM it is available in declarative form to whatever production wants to make use of it. 
Again, this implies conventions about how the knowledge is encoded in WM, plus a 
commonality in the variant conditions that can be used to trigger the depositing into WM. 
It is not known whether these solutions to the problem of multiple use would be adequate 
for much larger and more complex systems than HSII, but the suspicion is that they would 
not. 

4. Explicit conditionality on changes is a strong feature of HSP's architecture. 

The first condition element of every HSP production explicitly tests the nature of a WM 
change, and must match a change made in the previous cycle. Thus a production cannot 
fire any time its condition (excluding the first element) is true, but only when a particular 
type of change (tested by the first condition element) occurs in conjunction with a true 
condition. (Normally, the change causes the condition to become true). This explicit 
condition on a change has two important uses in HSP: (1) It provides the basis for the PM 
index described below under time efficiency. The PM index is an alternative to Forgy's 
scheme [1977] for reducing the dependence of execution time on PM size. (2) It solves 
the excitatory instability problem. A production cannot continue to fire cycle after cycle 
once become true, because it is also conditional on the occurrence of the change that 
made it true. 

[7] This problem is also r«eojmz«d by »h» InsJructabl« Produeiion SysUm »roup (Byeh»n«r, Forjy, Langlay, 

McDermoH, Nowoll and Ramakriahna, 1977], bul In »h« conUx» of how \o avoid ropotiUon in ins»rue<int <h«ir PS 
aboul muKipla uses. Thay propoa« general mapping machanisms (in lh« form of mor« productions) to brid(« fh« 

gap between variant use» 

^.s«**— ■— 
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Space Efficiency 

5. Procedural HSII knowledge decreases slightly in size when translated to HSP. 

Detailed space analysis of the POM KS shows that about 160 Kbits of long-term HSII 
procedural Knowledge translated to only .7 times that much in HSP. There are two 
possible explanations for this decrease: (1) Since HSP productions are interpreted, a more 
compact representation is possible; and (2) HSP can represent condition testing and 
searching of the global working memory more concisely. However, the explanation is 
probably more complex than this, as suggested by high variation of the HSP/HSII space 
ratio. Eleven subparts into which POM was partitioned had ratios varying from .4 to 2.2, 
averaging to the .7 quoted above. 

It was not possible to do space accounting of procedural knowledge for most of the 11 
other translated KSs because the differences between the HSII and HSP versions are too 
great. However, crude data for one other KS, RPOL, shows an overall HSP/HSII space ratio 
of 1. Since HSII RPOL is virtually all procedural, this yields a procedural ratio of about 1, 
which is consistent with assertion 5 within limits of accuracy. 

The procedural knowledge bit counts are supplemented by token counts0 for 8 of the 
11 POM subparts, which show an HSP/HSII ratio varying frtm .6 to 3.3, but averaging 1.0. 
Thus from a human perspective (assuming that humans perceue size by number of tokens) 
there is no change in the size of procedurally-encoded knowledge in translating from HSII 
to HSP. 

6. Declarative HSII knowlndze increases in size by up to half an order of magnitude. 

HSII declarative structures are mostly either simple arrays, dictionaries of spellings, or 
linked   networks,  although  all   are  encoded  internally  as  arrays  for  efficiency.    Arrays 
translate to HSP as one production per entry; the networks are typically represented by 
one production for each transition, or one production for all transitions out of each state. 

H In any case, the number of productions required is large. 

Seven instances of large declarative knowledge structures in the translated KSs were 
compared for size. Simple arrays require almost a factor of 4 more space in HSP, but 
sparseness can be exploited to reduce that factor by the fraction of non-default array 
entries. Tables of spellings (actually arrays of strings) have HSP/HSII space ratios of 
about 1. Two examples of network structures have tne following ratios: 1.2 (grammar) and 
3.2 (state transition network). The overall factor, excluding one exceptional case (a huge 
bit matrix), is 1.6. 

HSP facilities for so-called condition and action procedures allow a sequence of similar 
condition  or  action  elements to  be  packaged  as  a  parameterized  procedure  and  then 

[8]   A token is a lexical unit sucS as would b« racofnizsd by Iht lanfuat» compiltr. 
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referenced in many different productions with appropriate parameters supplied.9 These 
facilities are crucial for representation of HSU declarative structures because of the large 
number of similar productions involved. In the HSP POM KS, a savings of a factor of 10 is 
obtained in the number of condition znd action elements that must be represented 
explicitly. The bulk of this savings comes from productions encoding declarative HSII 
knowledge; the factor is much larger than 10 for these productions alone. Without 
procedures, assertion 6 might read "two orders of magnitude" or more. 

7. Total HSII knowledge increases in size by up to half an order of magnitude. 

In HSII POM, with an overall HSP/HSII space ratio of 1.1, the declarative/procedural 
split for long-term knowledge is .3/.7. But this is not a typical split. Many of the large 
KSs most recently added to HSII are estimated to be split about .9/.1. Assuming a .9/.1 
split for a full HSII configuration would give an overall factor of 1.5, assuming the 
declarative HSP/HSII ratio to hold at 1.6. If instead we assume a declarative ratio of 3.8 
(the worst observed), we get an overall factor of 3.5. We cannot be mure precise than 
this because the declarative structures of the new KSs have not been analyzed. Their 
ratios may well be larger than 3.8. 

Some related data comes from Rychener [1976] on PS translations of three classic 
artificial intelligence systems. Bit counts tend to be 2 or 3 times higher for the PSA, while 
very rough measures of source code size (related to our token counts) range from a slight 
disadvantage for the PSA to a factor of 3 or 4 advantage, depending on the comparison 
language. This bit count data agrees with assertion 7, even though Rychener's 
architecture is different from HSP, and his comparison systems different from HSII. This 
lends some credibility to the generality of assertion 7. However, this agreement could be 
mere coincidence; for example, HSP has to deal with data organized in tables, a 
disadvantage which does not seem to exist in Rychener's examples. 

8. HSP requires a much larger global working memory than HSII. 

Many HSII KSs use large local working memories in addition to the global Blackboard, 
and these local memories can be highly specialized for efficiency. HSP has only its global 
WM, and specialization of it is strongly limited by requirements of generality and uniform 
accessibility. This difference in specialization costs HSP less than half an order of 
magnitude for simple data items. For more complex data structures such as network nodes 
(as used in the SASS KS or the WIZARD procedure of the MOW KS), the cost can be as 
much as a full order of magnitude. Furthermore, such complex structures are so abundant 
that they dominate the overall cost. 

[9]    These procedure facilities ire purely for space efficiency. A production Uiin| fhem behevei exeetly ■■ if il! i»» 
elements   w*re  explicitly   written  out,  except   for   ■  small  time  efficiency  itee  in  ■aii|ninf   parameien   \o 

variables. 



Page lOO Conclusion Chnpfer 7 

Time Efficiency 

9. The implemented time efficiency mechanisms in HSP are critical for its viability. 

Three existing time efficiency mechanisms in HSP give a cortwined speedup of 3 or 4 
orders of magnitude over give implemen.^tion (i.e., one that evaluates every production 
as a result of every Wfv, . ange, and that searches WM for every condition element 
evaluated). All three mechanisms are suggested by analogs ;n the HSK architectui e. See 
Section 4.1 for details. 

The first, called the PM index, reduces a linear dependence of execution time on 
PM size to sublinear by associating subsets of relevant productions (i.e., exactly 
those to evaluate) from classes of WM changes. In the POM run only 5 on average 
out of the 1000 total productions had to be evaluated per WM change, giving a 
speedup of about 200. In a larger system, say one with 10,000 productions, the 
number of productions evaluated per change could be expected to be not much 
greater than 5 (and certainly much less than 50). This is because new productions 
will often tend to be responding to changes different from existing productions. 

The second mechanism, use of explicit pointers between WM elements, reduces the 
amount of WM searching during condition element evaluation. In the POM run only 
one out of every 80 condition elements evaluated required WM searching; the 
remainder located the matching WM element directly via a pointer from some 
previously matched WM element. This mechanism does not reduce the degree of 
execution time dependence on WM size, but does give a constant factor of roughly 
10 to 50 overall speedup in the POM run. 

The third mechanism, an index into WM according to the first twcj fields of a WM 
element, serves to reduce WM searching costs. Since it operates in the shadow of 
the second mechanism which greatly reduces the necessity for WM searching, the 
WM index makes only a small contribution. 

These mechanisms bring HSP to roughly the same level of tim6 efficiency as PSG with 
filters [McDermott, Newell and Moore, 1978], PSNLST, and OPS. Comparisons of the four 
PSAs were made, but on widely variant tasks, so details cannot be taken too seriously. ^ 
Underlying differences (machine, implementation language, etc.) were factored out as well 
as possible. Results of the comparison show the four PSAs within a half order of 
magnitude, or roughly equal in time efficiency considering accuracy of the comparison. 

[10]   It help» thai each of (ha PSAs has affieiency mocf.anisms makin| i( ralaiivaly intanaiilva to PM and WM aiz«. 
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10. The time cost of HSP re/at. 'e to HSII is at least two orders of mannitude. 

In equiva'-nf uniprocess runs of the POM + RPOL KS configuration, HSP took 255 times 
as long as hbil (917 sec as opposed to 3.6). This factor of 255 reduces to a range of 6 to 
36 when corrected for eight underlying system differences: execution rate of machine, 
instruction set of machine, address space size, operating system, implementation system, 
degree of ke. nel optim.zation, speech knowledge, and complications of parallelism. 

There are problems with the generality of this comparison since it is based on a single 
run of a small configuration (i.e., containing only the two KSs: POM and RPOL) The 
part.cular identity of the syllable input to POM is not important, but the syllable length is 
The syllable used was the shortest possible; the longest possible syllable would increase 
he gap between HSII and HSP by another half to full order of magnitude. However, a 

factor of only about 2 is expected for a typical mix of syllable lengths. Relative »o the 
sma ness of the KS configuration, there are several important HSII KSs (SASS, WOS' 0. and 
MOW) wh.ch rely heavily on local control and working memory for efficiency. In their 
current form these KSs are seriously mismatched to the recognition-intensive HSP 
arch, ecture, and would pay a time penalty of two orders of magnitude or more if directly 
translated However, there may exist alternative formulations of these KSs that are better 
su.ted to HSP. We estimate that a full KS configuration would add another factor of one to 
one-and-a-half orders of magnitude over the POM * RPOL configuration. Putting together 
these corrections for syllable length and atypicality of the KSs gives a rough overall time 

^c   '^uL   SS       tW0 t0 three-and-a-half orders of magnitude for a full configuration of 
Kbs in HSP. 

Related data by Rychener [1976] shows a factor of 6 to 10 loss In time efficiency for 
PS |;ansl^ons vs. original versions of six classic artificial intelligence systems. Rychener 
predicts that additional efficiency mechanisms in his PSA (e.g., compilation as proposed by 
Forgy [1977]) could get at least another factor of 5 improvement. Such a large similar 
improvement in HSP is not likely, due to existing mechanisms that reduce WM searching to 
a low level, but it is not unreasonable to expect an additional factor of 2 or 3 The large 
discrepancy of a couple of orders of magnitude between Rychener's six PSs and a full 
configuration of KSs in HSP is probably due to Rychener's tasks being better suited to the 
recognition-oriented character of a PSA than are the bulk of the speech KSs. The limited 
data for the POM ♦ RPOL HSP configuration is in rough agreement with Rychener's data. 

//. Local control and working memory are the prime sources of HSII time efficiency. 

Since HSP has such limited local control (its actions are simple sequences and cannot 

u? .^u^lu T!0' ll mUSt re,y 0n da,a-directed invocation operating from the global 
WM. Much of the data-directed invocation might be avoided if productions could be much 
larger, compressing multiple PS cycles into single ones. But this is made difficult by an 
accompanying blowup in the number of productions. 

The cost of data-directed control in HSP has several sources: The creation/deletion of 
change elements, creation/deletion of control signals in WM, PM indexing (finding 
productions   to   evaluate   based   on   the   changes),   and   an   initial   portion   of   cohdition 
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evaluation for each production that is necessary to reobtain the context of ths preceeding 
production. The total cost is estimated to be 30-457, of execution time. 

H5P has data-directed knowledge units in the case of POM which are about 80 times 
smaller than HSII, and HSP utilizes 500 times as many data-directed invocations during 
execution. Yet the overhead is not 500 times greater; HSP data-directed invocations 
consume 30-457, of execution time as opposed to 97. in HSII. This is because the HSII 
overhead is dominated by the monitoring of Blackboard changes rather than by the actual 
invocations. 

The other side of the coin from local control is local working memory use. HSII makes 
heavy use of local working memory for KS efficiency. Since a PSA contains no analogous 
facility, HSP is forced to use its global WM for such functions. The fact that HSP WM can 
be read without need of locking operations helps somewhat, but HSP is still at a serious 
disadvantage. The HSP run of POM + RP0L made over 5 times as many global working 
memory reads as a corresponding HSII run, and more than twice as many creations. 
Further, as »entioned above, there are other KSs that make much heavier, use of local 
data. We expect HSP versions of these would make hundreds of times as many global 
working memory reads and creations as the HSII versions. 

Converting HSP to local working memory use without local control makes no sense ~ 
data-directed (global) control is based on the global WM. Thus the percentage of time 
spent in global WM access was estimated for a hypothetical HSP system already converted 
to use of local control (except for the few data-directed invocations necessary for inter- 
KS communication). The result is that 407. of execution time in such a system would be for 
WM access. And since corresponding local working memory operations are so much faster 
(50 to 600 times) in HSP than global ones, virtually all of that 407. could be eliminated. 

Two other sources of HSP inefficiency are identified: the absence of a declarative 
long-term memory facility, and searching of WM. The former consumes 157. of execution 
time in the POM run (but some of this overlaps with the WM access costs discussed above). 
The latter is insignificant (37.) because of the explicit WM element references, but is 
projected to increase to around 307. of total time with a full input utterance. 

Taking all the sources of inefficiency together, we can account for roughly a factor of 
7 in execution time. This takes us well on the way toward explaining the normalized HSII- 
HSP difference of 6 to 36 obtained for the POM run. But it also suggests there may be 
other sources. One such possibility is the limited power of the HSP production language, as 
exemplified by the inability of a single production to deal with a data list of arbitrary 
length. 

12. Explicit pointers between WM elements greatly enhance time efficiency. 

The use of explicit pointers between WM elements, discussed above under time 
efficiency, provides an alternative to other known mechanisms for reducing the impact of 
WM searching on production evaluation time. One drawback of its use is a negative effect 
on representational issues (e.g., the possibility of spurious pointers to deleted elements); 
other common efficiency mechanisms are transparent to knowledge representation.   The 
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scheme used by OPS [Forgy, 1977] is relatively insensitive to the number of elements in 
WM. HSP's explicit pointers do not reduce the linear dependence of evaluation time on WM 
size, but do reduce the Jfect of WM size by a large constant factor (about 80 in the case 
studied),  and  thus  will  be  most  useful in  applications  for  which WM size  is  small  to 

moderate. 

Parallelism 

13, HSP exploits paraUetism with Lower overhead than HSII. 

The HSP architecture requires only 27. multiprocessing overhead compared to 427. for 
Fennell and Lesser's multiprocessor version of HSII [Fenneil, 1975; Fennell and Lesser, 
1977]. HSP's low overhead is due to three factors: (1) the absence of explicit WM locking, 
(2) the absence of special local data contexts to hold relevant global working memory 
changes (as needed by KS instantiations in HSII), and (3) the simplicity of process handling. 
The absence of explicit WM locking was made possible by several features of HSP's PS 
architecture: the explicit separation of read activity (conditions) from write activity 
(actions), global synchronization of the recognize-act cycle, and sequential action execution 
(permitted by a high recognize-act ratio). 

However, the 27 to 427 overhead comparison is unfair and must be qualified. HSII 
provides a more complete locking mechanism for global working memory, allowing locks to 
extend over longer intervals of KS activity. (In effect, HSP locking extends only over a 
single PS cycle). There are two possibilities: (1) The more stringent HSII locking is 
unnecessary. (Lesser and Fennell [1977] feel this may be so because of HSII's basic self- 
correcting nature which would allow it to recover from synchronization errors). Then HSII 
overhead could be much lower, but could probably not come within reach of HSP's 27,. (2) 
Stringent locking is necessary. In this case, HSP's architecture must be augmented to 
permit explicit WM locking, with the inevitable result of increased overhead. It is not 
known exactly how this augmentation might be done, nor how sharp the increase In 

overhead might be. 

14.' HSP achieves   higher parallelism than HSII. 

The degree of parallelism possible in HSP is higher than HSII. HSP's smaller knowledge 
unit size allows exploitation of intra-KS parallelism, both in the form of true parallel 
activity, and in parallel evaluation of conditions which turn out to be false. This intra-KS 
parallelism should account for at least a half order of magnitude improvement In 
parallelism. The data obtained shows a much greater HSP-HSI1 margin than this, because 
HSII's more stringent locking handicaps it with overhead and lost time. Resolving the 
difference in locking between the two systems, while its exact effect is unknown, might 
wash away all of HSP's advantage except for some of the intra-KS parallelism. 

HSP utilizes 537. of 10 processors in the POM run, which is roughly the -same as that 
measured by Fennell and Lesser for an HSII configuration with 2 to 3 times the knowledge 
content   and  an  input   utterance   10 or  20  times  as  long  (both of  which  increase  the 
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potential for parallelism). Furthermore, while HSII parallelism peaks by the time 10 
processors are used, simulations of selected HSP cycles suggest that parallelism continues 
to increase with more processors, peaking between 30 and 40 processors. (The peak 
parallelism could not be precisely determined, but is probably between 7 and 10). 

It was not possible to get a good estimate of HSP parallelism with knowledge content 
and utterance length comparable to HSII. But since cycle size is the prime determinant of 
parallelism during the recognition phase, and cycle sizes can be projected to be 20 to 60 
times larger than In the POM run, we expect close to 1007, utilization of 10 processors 
during recognition (and still high utilization with 50 to 100 processors). This means 
parallelism will be determined by the recognition-action ratio and the efficiency of action 
execution (see the following assertion). 

15. The Umiting factor for HSP parallelism is sequential action execution. 

Lost time in HSP is dominated by the processor idle time caused by sequential action 
execution. For example, in the POM run with 10 processors, 297. of processor time was 
action-idle time, while other sources of lost time totalled only 127. This action-idle time 
rises sharply with the number of processors: simulations of the POM run show a doubling 
of its percentage in going from 10 to 50 processors. High utilizations calculated for the 
recognition phase alone confirm the action phase as the limiting factor. With 10 processors, 
there is 827 utilization during recognition compared to 537 overall. And since recognition 
utilizations approaching 1007- are projected for larger HSP configurations, the efficiency of 
action execution assumes a crucial importance. 

There are a couple of possible optimizations that can be applied to action execution. 
One is to use a rigid, specialized format for change elements In order to reduce the 
overhead of fchange element deletion in the action phase. The second is .to make the 
changes in parallel. Some additional synchronization would be necessary to protect list 
fields of WM elements and the WM index structure; but this would not inhibit parallelism in 
a major way. It is estimated that the combined effect of these optimizations could raise 
utilization of 10 processors in'the POM run from 537 to around 757. 

i6. Hardware memory interference does not seriously limit HSP parallelism. 

Measurement of memory accesses in an HSP run showed that considerably less than 
.37 of accesses were to shared HSP entities (productions, WM elements, etc.). 
Theoretically, this is so low that hundreds of processors could run in parallel without 
serious interference. In practice, however, there is also a substantial amount of shared 
code in the HSP kernel (production interpreters, etc.), resulting in 717 of all accesses 
being  to shared  pages. This creates a potential  for serious interference. z One  page 

[11]   This optimizallon would also decrease blocked lime during the recognition phase since change efemenl creation, 

which happen! inside the action interpretation critical section, would also be significantly fatter. 

[12]  Sharing  of  code  is forced by a limit on the total number of pages in the system. When there are tnciy 

processes, we can afford to copy only a few pages for every process. 
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containing U kernel code (including the L* interpreters) accounted for 687. of accesses. By 
making multiple copies of this page, accesses to shared pages were reduced from 717. to 
37. This was sufficient to ensure negligible interference with 10 processors. 

If HSP were optimized by compiling L* code into machine code, thus eliminating 
accesses to the L* interpreters, the majority of accesses would then be to the HSP kernel 
code (mainly the production interpreters). By making copies of HSP kernel code pages, the 
percentage of accesses to shared pages could again be brought down to a low level 
(though perhaps not as low as 37). 

Small Address Problem 

17. The HSP zrchitecture aids solutLon of the smaLL address problem. 

The problem of using a large primary memory through the window of a small address 
space is a serious and difficult one. This small address problem exists on C.mmp, with its 
million words of memory and its 16-bit PDPU processors (with relocation registers), as It 
will on virtually any multi-mini or multi-micro-processor system. The HSP architecture aids 
the solution of this problem. Once the problem has been solved for the HSP kernel itself, 
a PS of any size may be accomodafed without further concern. 

A fast relocation-register load operation provided by the underlying C.mmp system is 
used by L* to provide overlay facilities. L* permits the upper half of the 32K address 
space to be overlayed by 4K pages in 4 page slots (sections of the address space). HSP 
uses one of these slots to access productions spread across multiple, mutually-exclusive 
pages, and another slot similarly for WM elements. The architectural features which permit 
this are the centralization of both long-term and short-term knowledge into memories (PM 
and WM) with small, self-contained units. 

7.2   Summary of the Aspects Studied 

We have shown that the HSP architecture is adequate for representing the HSII speech 
knowledge. This includes HSII declarative knowledge which must translate to procedural 
form in HSP. Adequacy of HSP was not a foregone conclusion because the simplicity of the 
HSP architecture compared to HSII gave grounds for some doubt about adequacy. 

Space and time efficiency are another story. The moderate space penalty for 
representing declarative HSII knowledge in HSP is cause for concern since HSII does 
contain many large declarative knowledge structures. Even more serious concern arises 
over space inefficiency of the global HSP working memory, since it =■ ust be used in place 
of large, highly optimized local working memories that are typical in HSII KSs. HSP's lack 
of local working memory also causes a large loss of time efficiency because of greater 
creation/read/write costs and heavier use of data-directed control in global WM. HSP's 
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large time efficiency handicap (two to three-and-a-half orders of magnitude) exists in spite 
of efficiency mechanisms which make HSP comparable in time efficiency to several other 
PSAs. 

Some of the time efficiency handicap can be made up through increased ^arallel'sm. 
An additional source of parallelism, called intra-KS parallelism, results from HSP's smaller 
knowledge unit sire. Intra-KS parallelism is due mostly to parallel evaluation of low-level 
alternative conditions rather than true parallel paths of computation within a KS (although 
the latter makes a small contribution). The effect on a full KS configuration is; estimated 
conservatively to be a half order of magnitude increase in parallelism. 

Except for the added parallelism, only one positive reason for using HSP has been 
revealed: help with the small address problem. Multi-micro and multi-mini processor« such 
as C.mmp, for which the small address problem is an almost inevitable fact of life, are 
currently rare. But there is some chance they wil; become a dominant architecture. If so, 
solutions to the - mall address problem will be much in demand, and this could be a major 
impetus for use of PSAs. Other positive features of the HSP architecture may come from 
aspects not explored by this thesis. The following section identifies several candidates. 

'• 
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7.3   Questions for a Continued Evaluation 

This section presents several important questions which have emerged from the 
current study. These questions are ones that need to be answered before the central 
question of the thesis can be finally resolved. Given the current state of the comparison, 
in which HSP fares poorly against HSU, some alleviation of inefficiencies or additional 
positive factors are sorely needed if the balance is to swing back toward HSP. Sources of 
such help may exist in the following list, but it is not possible to say for certain from our 
current state of understanding. Figure 7.2 gives a preview of the questions, after which 
each is remarked on briefly. 

1. Can HSII KSs that heavily rely on local efficiency ultimately be made tractable in HSP? 
2. Is the distributed control of directionality as dictated by a PSA feasible? 
3. Can a significant improvement in ease of augmentation be realized in a PSA? 
4. Do there or can there exist HSII KSs which cannot be represented adequately in HSP? 
5. Do there exist situations that require the inhomogeneity of representation in HSP? 
6. Is the level of individual productions right for performance analysis? 
7. Do the simple language and small size of HSP productions make them more readable? 
8. Can the HSP architecture be augmented with explicit WM locking if necessary? 
9. Can a full HSP KS configuration productively use 50-100 processors? 

Figure 7.2   Some remaining questions 

i. Can HSII KSs that heavily rely on local efficiency ultimately be made tractable in HSP? 

We have seen that the bulk of HSP's efficiency handicap relative to HSII comes from 
HSP's lack of local working memory and control. It is important to make some inroads on 
this handicap if HSP is to be useful, and several possibilities present themselves. First, 
optimization in the HSP kernel of the data-directed invocation and WM access mechanisms 
would not be difficult. But it would contribute only a modest improvement (perhaps a 50^ 
overall speedup), which would not make a noticeable dent in the handicap of several 
orders of magnitude. 

A second possibility, though one we would prefer not to use since it subverts some of 
the advantages of PSAs, is to permit productions to have complex actions with their own 
conditionality and local working memory. This is moving toward the large knowledge unit 
size of HSII. Perhaps there is some middle ground that recovers a large chunk of 
efficiency without sacrificing the benefits of a PSA (themselves poorly understood as yet). 

There is a speculative possibility for regaining efficiency which entails breaking away 
from the close HSII-HSP correspondence purposely maintained in the thesis research. 
Perhaps the HSII KSs which do rely heavily on local efficiency could be restructured 
drastically to better suit the recognition-oriented PSA. There is a hint of a precedent for 
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this in the history of HSII. Before the advent of the WIZARD procedure for word 
verification (one of the heavy use s of local operations), there existed the WOMOS and 
POSSE KS modules which provided the same global function. These KSs were more 
recognition-oriented than WIZARD. Unfortunately, they were inherently much less efficient 
than WIZARD, so It is unlikely they would even be an improvement over WIZARD in HSP 
versions. 

One final idea, aR&'n highly speculative, is to "compile" many PS cycles into one by 
combining production sequences into single large productions.13 This would eliminate data- 
directed invocation and creation/deletion of control elements which mediate between the 
multiple cycles. In HSP this would cause a large increase in the number of productions, 
with high structural redundancy, but a compilation scheme such as OPS uses might solve 
this problem. 

2. Is the distributed control of directionality as dictated by a PSA feasible? 

Claims have been made that PSAs are unsuitable for representation of directionality 
control [Mostow and Hayes-Roth, 1978]. Thus it is incumbent upon us to prove them 
wrong if HSP is to survive its comparison with HSII. HSII has a specialized focussing 
mechanism which operates with global knowledge of the state of the computation. In HSP 
we must show (if possible) that the requisite global state information can be represented 
in WM, and continually updated by a set of added productions; and that task productions 
can be made to schedule themselves with additional condition elements sensitive to this 
representation of global state. If we cannot accomplish this, the conclusion that HSP is 
inadequate seems unavoidable. One difficulty that might be encountered is coordination of 
the global-state-maintaining productions with the task productions; the former are logically 
at a meta-level, yet are mixed in at the same level with the latter. 

3. Can a significant improvement in ease of augmentation be realized in a PSA? 

Ease of augmentation is one of the most promising aspects of a PSA, so we need to 
show a significant advantage here to balance negative aspects such as efficiency. One 
could propose case studies of augmentation in iterating HSP KSs. But a better strategy is 
to await results from related efforts such as the Instructable PS project [Rychener and 
Newell, 1978]. HSP's current architecture, lacking conflict resolution, may not properly 
support augmentation. If necessary, conflict resolution can be added to HSP, at the risk of 
sharply reduced parallelism. 

[13] One difficuMy we foresee it (' i< the 'n-cycle delay" mechanism used in HSP will prevent compiletton of thos* 
cycles since (he sequentially is essential. There may be ways around this, perhaps by adding more power to 
HSP to make the n-cycle delays unnecessary. It is not clear that conflict resolution would work properly with 

these large productions. 
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4. Do there or can there exist HSII KSs which canaot be represented adequately in HSP? 

Since there are about 20 HSII KSs which have not been translated to HSP, plus a 
virtually open-ended set of others which might conceivably be added to HSII, our evidence 
for adequacy is incomplete. Particularly suspicious are KSs such as WOSEQ and the new 
SASS, which use highly specialized local data structur.-s. The current belief is that HSP is 
adequate for these, though inefficient. A more thorough HSII-HSP evaluation requires 
evidence for this belief. 

5. Do there exist situations that require the inhomogeneity of representation in HSP? 

The HSP architecture is better suited than HSII to representation of inhomogeneous 
knowledge, e.g., knowledge containing rmny special cases. HSII's strong point is 
homogeneous encodings; when it is forced out of these it must fall back on more expensive 
and ad hoc representations. This could turn into a strong advantage for HSP if the drive 
for improved performance pushed in the direction of inhomoganeity. This is uncertain at 
this point, but a weak argument can be made that as a system is extended and tuned it 
must necessarily incorporate more and more special case knowledge. 

6. Is the Level of individual productions right for performance analysis? 

Performance analysis at the level of productions can be accomodated easily in HSP. 
The only issues are whether that level is a useful one (it is perhaps loo low), and whether 
performance analysis at higher levels (always necessary) is made more difficult in a PSA. 
These issues can be resolved only by experience with larger KS configurations in HSPi the 
current two-KS configuration is too small to provide any significant insight. One possibility 
is that special-purpose productions can be added to handle the higher-level performance 
analysis, much in the same way that global state is to be maintained for directionality 
control. 

7. Do the simple language and small size of HSP productions make them more readable? 

The easier it is to characterize the knowledge content of a KS, the better (e.g., for 
communication with others in the scientific community). HSP productions seem to be much 
preferable to SAIL procedures: individual productions can be studied, and production 
counts are illuminating. But it is not so simple. There is the matter of control: productions 
can have complex interrelationships not at all apparent in their outward structure. 
Furthermore, much important HSII knowledge is in tables or networks, which are fine to 
read in their naked form.  Obviously, more experience is required to answer this question. 
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8. Can the HSP architecture be augmented with explicit WM locking if necessary? 

The point, has been made that HSP's synchronization of WM access cannot currently 
extend over more than a single PS cycle. I.e., HSP has nothing HKe the ability in HSII of a 
KS obtaining arbitrarily long exclusive access io some part of global working memory. 
This more complete locking facility may turn out to be essential for HSP, so we must ask 
whether it can be added without destroying the architecture's positive features. Such an 
addition seems to require fundamental changes, such as explicit locking and unlocking 
operations as new action primitives, and possible delaying of evaluation for "blocked" 
productions. These changes seem feasible, but their success is by no means assured. 

9. Can a fall HSP KS configuration productively use 50-100 processors? 

THe HSP simulator predicted moderate utilization of up to 50 processors with the two- 
KS configuration operating on a small fragment of input utterance. But there is a good 
prospect for much higher utilizations in a full KS configuration operating on a full 
utterance. This prospect makes a CM* [Swan, Fuller and Siewiorek, 1977] version of HSP 
attractive, but the poor overall performance of HSP relative to HSII makes such a version 
pointless for the time being. 

7.4   Contributions 

The contributions of this thesis come in three major categories: 

First, of course, is the evaluation of a PSA for HSII ~ the central goal of the research. 
A partial evaluation is presented, focussing on the problems of representational adequacy 
and space and time efficiency, which are incidentally some of the least promising for a 
PSA. From this vantage point, we ask questions that define appropriate directions for a 
continuation of the evaluation. Several of these directions hold promise for PSAs such as 
HSP. The partial evaluation is unfavorable for HSP, but at least we have quantified it so 
that a complete picture can be fit together as additional questions are answered. 

We provide an enhanced understanding of HSII, a system which is a highly visible and 
important contribution to artificial intelligence, and thus worth knowing more about. By 
investigation through HSP of marked alternatives to HSII's philosophy, we shed light on li. 
For example, we contribute a better understanding of HSII's use of local memory and 
control for efficiency; we add force to the question of whether HSII could increase 
parallelism with greatly reduced or non-existent Blackboard synchronization, and possibly 
a decrease in knowledge unit size; and we call into question (though modestly) the strong 
belief that directionality control requires a separate, specialized mechanism. 

We provide another data point for the applicability of PSAs to artificial intelligence 
systems. The significant aspect of the speech knowledge-sources that distinguishes speech 
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understanding   from   the   domains   studied   by   Rychener   [1976]   is   the   heavy   use   of 
declarative knowledge structures. 

We demonstrate several novel features which may be of use to designers of PSAs. We 
show that permitting multiple firings per PS cycle has appeal (at least for some tasKs), and 
that eliminating conflict resolution does not necessarily cripple; that writing productions to 
contain explicit conditions on changes is a simple way to avoid repeated firing, and has 
efficiency benefits as well; that an attribute-value structure for WM and condition 
elements adds a useful bit of flexibility; and finally, that allowing WM elements to contain 
explicit references to each other dramatically cuts WM searching during evaluation. 

Finally, we show that it is possible to obtain meaningful comparisons of related but 
different complex syst TS. The field of artificial intelligence could benefit from more 
comparisons of this sort. 

•      ■ 
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Appendix A 

HSP Specifications 

>  Uorking  memory   (UM)   is an unordered collection of  UM elements   (UNEs) 

> There   is no architectural   limit  to  the size of UM 

> Hfl  elements 

> A UM element lUHE) is an association list structure of 
pairs: field identifier, field value 
> E.g. < Idl/vall Id2/val2 > 
> These are very similar to Hayes-Roth's Parameterized 

Structural Representations (PSRs) [Hayes-Roth, 1973] 

> The field identifier may be defaulted, in which case 
the field is identified positionally from the start of 
the UME (e.g. the third field value specified uith a 
defaulted field identifier is taken as the third field 
from the start) 

> Field values may be named symbols, integers, references 
to other UMEs, or single-level lists of the preceeding 
i tems 

> Speech knowledge units (e.g., syllables, words) are 
defined in lexicons, which are themselves represented 
by symbols (e.g., SYL, WRD) 
> The knc i dge units are represented externally by 

a "..." notation, e.g., "BEEF" for the 
word 'beef 

> The most recent previous occurrence of a lexicon 
symbol determines which lexicon is to be used 

> The external representation of a knowledge unit is 
translated internally to an integer, namely the 
index of the item in its lexicon 

> There are two particularly common forms of UM elements: 
hyps (hypotheses) and links (support links between 
hypotheses) 

> Hyps ülways begin with HYP as the first field value, 
the lexicon of the hyp second, and the knowledge 
unit symbol third (these fields are positionally 
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defined) 

> E.g. <HYP WRO "BEEF'^ 
Hyps also have a begin time field (which is a list 
of two integers: begin time and begin range) and an 
end time field (similar to begin time) 

> E.g. <HYP WRD "BEEF" BTIME/(20 3) ETIME/(60 0) > 

Hyps have an upper validity field (UVLD) which holds 
validity propagated upward from supporting hyps, a 
lower validity field (LVLD) which holds validity 

propagated downward, and a combined validity 

field (YLD); all validity fields have single 
integers between -100 and 100 as values 

Hyps also have an upper links (ULNKS) field which is 
a list of references to all the links which have the 
hyp as their lower hyp; and similarly, a list of 

alternative supporting links (LINKS) which are links 
having the hyp as their upper hyp 
Links always begin with LNK as the first field 

value, the lexicon of the lower supporting hyp 
second, followed by a reference to the upper 
(supported) hyp, followed by a list of references to 
the sequence of lower (supporting) hyps, followed by 
both upper and lower implications (Integers between 
-100 and 100 representing the upward and downward 
strength of the tupport) 
> E.g. <LNK WRD UHYP/H23 LHYPS/(H17 H18) UIMP/90 

LI HP/30 > where H23 must be a word hyp 

> Production memory (PM) is an unordered collection of all 
productions existing in the system 

> Productions consist of a sequence of condition elements 

(CEs) followed by the -> symbol, followed by a sequence 
of action elements (AEs) 

> A subI ist of condition elements may take the place of a 
single element, to arbitrary depth; the sublist structure 
is transparent to the production interpreter 
> This transparent sublist facility is merely for 

allowing naming and/or sharing of CEs among productions 

> Condition elements 

> A CE is an asscciation list structure closely 
paralleling the UHE structure 
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> Field values of a CE may be the same as in UKEs, except 
that a variable or the special symbol * may also appear 

in place of any of the other possible items 
> By convention, any external symbol beginning with 

a 8 is recognized as a variable 

> A CE may also be the symbol NOT followed by an 

association list structure as above 
> Or a CE may be a variable, followed by the symbol =, 

followed by an association list 
> Or a NOT followed by all three of these 

> Condition element match 

> A CE is matched against a UME field for field from left _ 
to right for positional fields, otherwise by 
corresponding field identifiers - 
> Corresponding named symbols must satisfy a symbol 

equali ty test 
> Corresponding integers must satisfy an integer 

equali ty test 
> Corresponding references to UflEs must refer to the 

same UME 
> Corresponding lists must match in every 

corresponding element (it is necessary that the 

lists be the same length) 

> The first occurrence (in left to right order) of a 
variable in a condition indicates a variable binding is 
to occur, while successive occurrences of the same 
variable indicate a match against the variable's 

binding i s to occur 

> The special symbol * will successfully match any 

element -it corresponds to 

> The special symbol ** within a list will match 
zero or more items CT the list 
> Only one occurrence of ** is permitted in a list 

> E.g. the variable «LH in LHYPSA* SLH **) 
picks out the second lower hyp from the list if the 

list has two or more hyps 
> E.g. LHYPS/(8LH1 ** 8LH2) will pick out the first 

and last if the list has at least two hyps 

> A failure of the match at any point signals failure 

of the entire CE match 

> Special match predicates may be composed from other 
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predicates uith AND, OR and NOT enclosed within [ ] 

> The binary predicates ( > and < for integers ) 

must be written within [ ] to delineate the 

second argument 

> E.g. [ < 73 ] 

> The predicate = may be used inside [ ] to obtain 
the standard match operation for the particular 
field 

> E.g. fI did/I=3] is the same as fidid/3 , but 

f ldid/[3] wiI I not work 

> NOT may be used within [ ] to reverse the sense 
of ano'ther predicate 

> E.g. [NOT < 60] , [NOT = 6] 

> AND may be usedt to create conjunctive tests 

> E.g. ETIME/(4[ =8ET AND > 8BT+12 1  0 ) 

where the [...] applies to the first element 

of the ETIME list 

> OR may be used to create disjunctive tests 

> E.g. fldid/[ =1 OR =2 OR =3] 

> The binary infix arithmetic operators (+, -t *, 

/, MAX, MIN, ABS) may be used with integers and 

and integer variables within [ ] 

> Inner levels of [ ] denote nesting of 
arithmetic expressions 

> E.g. [ < 8BR+3] , [ > [«V*SI]/100 ] 

> Condition and action procedures 

> As mentioned above, CEs can be grouped into lists 
and named, and then used in multiple productions 
without duplicating the space 
> These might be called parameter less procedures 

> A facility also exists for condition procedures with 
parameters 
> This permits much greater sharing across productions 

since the use in each sharing production need not be 
identical, but only the same modulo a set of parameters 

> The definition format is: 

procnamet ( CPROC (Svarl i*var2 ...) eel ce2 ce3 ... ) 

where eel ee2 ce3 ... are.CEs containing instances of 

the variables Svarl 8var2 ... 

> The format of a call is simply: 
parml parm2 ... procname in a condition 

> A similar facility exists for actions using APROC, 

*• 
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except that a balancing APROC, is also needed 
> E.g.  procnamei ( APROC (Svarl ...) ael ae2 ... APROC.) 

> Condi t ion match 

> By convention the first CE in a production refers 
to a symbolization of a change which must have 
occurred in the previous cycle of the PS 
> E.g. <M0D H23 VLD> — a change to the validity of 

hyp H23 

> A backtracking mechanism in the production interpreter 
attempts all possible matches of CEs to UMEs, and 
the action will be executed once for each successful match 
> Thus a single production may fire multiple times in 

a s i ngIe eye 1e 

> Each successive ZE  is matched either against the entire 
Un, or if the CE is of the form Svar =<...> and the 
variable Svar uas assigned in a previous CE of the 
same condition, the CE is matched only against the single 
UriE (or list of UMEs) bound to 8var 

> Uhen a CE contains a NOT, it will evaluate to true only 
if all possible matches against UMEs fail; thus there 
are no multiple satisfying assignments possible for a 
NOT CE 
> It is meaningless to attempt to bind a variable 

wi thin a NOT CE 

> Action elements 

> Action elements (AEs) are simple calls to one of the 
action primitives listed below 

> UMEs and subelements which were bcund to variables 
during the condition match are designated to the AEs 
by passing the variables as parameters 

> AEs are written in the same way as UMEs or CEs using 
< >, giving a form of prefix function notation 

> All the AEs produce as a side effect a symbolization 
of the change 
> This is used to drive the following PS cycle 

> <NEW <. ..> > or <NEW 8wine=<...> > 

'*''*''•■■■■■■•BBBWäP^ *■' »^i**! i    i mi; V, .--^^^^^ Wü^*^^^ 
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> Creates a new UflE as specified by the 
attribute-value structure <...> 

(and binds it to variable Syrne if present) 

> <DEL 8ume> 
> Deletes the UME bound to variable 8ume 

> <M0D 8ume fldld neuval> 
> Replaces the field specified by field identifier 

fldld of the UtlE bound to variable Swtrie with 

neuval 
> Ui II also create a new field in 8wme if no field 

with identifier fldid already exists 

> <M0D,ADD 8wrne fldid 8wmeref> 
> Adds a reference to the UME bound to 8wffleref to 

the beginning of the list of references that is 

field fldid of the UflE bound to 8wme 

> Uill also create a new field in 8wme if no field 

with identifier fldid already exists 

> <M0D.ADDE 8wme fldid 8wmeref> 
> Same as MOD,ADD except adds to the end of the 

list rather than the beginning 

> <M0D,REP 8wme fldld 8oldwffle 8newwine> 

> Replaces a reference to 8oldwme by a reference to 

Sncwume wherever it occurs in the list that is 

field fldid of 8ume 

> <M0D.DEL 8wme fldld 8wmeref> 
> Similar to MOD.ADD except deletes the reference 

from the I ist 
> Hill also delete the field if the list becomes 

empty by deleting the reference 
> Thus fldid/O should never be URrd in a 

condition, but rather NOT < ... fldld/* ... > 

> Examples 
> <NEM 8L= < LNK SYL UHYP/8H LHYPS/(8M1 «M2) IMP/90 > > 

> Creates a new link to a word hyp bound to 8M, 
from the sequence of lower syllable hyps uound to 

8M1 and 8M2, with implication - 98, and binds the 

new link to variable 8L 

> <H0D 8HL BTIME 8BT> 
> Replaces the current begin-time of hyp IHL (list 

of time integer and time range integer) with the 

time I ist bound to 8BT 

> <M0D.DEL 8LH ULNK 80L> 
> Deletes the reference to link 80L from the ÜLNK 

field of hyp 8LH 

 _  ii.. ■   ■ —■——*, 
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> The binary infix arithmetic operators (+, -, *, /, MAX,, 

HIN, ABS) may be used within [ ] when necessary to 

compute an inteo^r for new value 
> E.g. <M0D 8LK LYLD [[8I*SLY]/100] > 

> PS control 

> See Section 5.1 of the thesis (under "Parallelism in 
the HSP Control Cycle") for an explanation of global 

control in HSP 

■"■— ■—— ■v.-- 
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Appendix B 

Sample HSP Productions 

Below is an example of HSII declarative Knowledge encoded as HSP productions — a 
table of segment vowel probabilities. There is a separate production for each table entry 
(PD.VP1 through PD.YP43), though they all use the condition procedure POM.YPRB to save 
space (see the end of Section 3.1.4). (There are 43 altogether — not all are shown 
below). POM.YPRB takes four parameters: the identity of the speech segment and its a 
priori vowel probability for each of three vowel types (A, I, U). (Note the order of the 
parameters is reversed from declaration to call). The productions trigger on a new 
segment hyp (hypothesis represented as a Working Memory element) and store the three 
probabilities as new fields of the hyp if the segment identity matches the one in the 
production. The Production Memory index has these productions indexed by four levels: 
NEW, HYP, SEG, and "xx" (the segment identity), so only the single correct production need 
be evaluated when a new segment hyp appears. 

POM.YPRBJ   <    CPROC (8UYP 81YP 8AYP 8X) 
< NEW 8S > 
8S= < HYP SEG 8X > 

-> 

< MOD 8S AYPRB 8AYP > 
< MOD 8S IYPRB 81 YP > 
< MOD 89 UYPRB 8UYP > > 

PD.YP1 : •  MM 0 0 0 POM.YPRB ) 
PD.YP2 J ( "K" 0 0 0 POM.YPRB ) 
PD.YP3 I < "P" 0 0 0 POM.YPRB ) 

• t • 

PD.VP32 t ( "EY" 16 80 0 POM.YPRB ) 
PD.YP33 : ( "EH" 30 39 17 POM.YPRB ) 
PD.YP34 : ( "IH" 16 50 25 POM.YPRB ) 
PD.YP35 I ( "IX" 0 100 0 POM.YPRB ) 
PD.YP36 : ( "IY" 0 48 29 POM.YPRB ) 
PD.YP37 : ( "EL" 15 0 48 POM.YPRB ) 
PD.YP38 : ( "ER" 11 20 33 POM.YPRB ) 
PD.YP39 ! ( "OW" 24 11 58 POM.YPRB ) 
PD.YP40 : < "UH" 21 30 33 P'JM.YPRB ) 
PD.YP41 l ( "UW" 0 0 49 POM.YPRB ) 
PD.YP'12 J ( "UX" 0 0 0 POM.YPRB ) 
PD.YP43 » ( "AY" 17 39 0 POM.YPRB ) 

——_ 
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The three productions below (PD.CVPRBl, 2 and 3) calculate tho combined vowel 
probabilities of each type (A, I, U) for an "option-seg". An option-seg is a hyp 
representing the combination of one to a maximum of three (by convention) alternative 
segments in the same time interval. The cases of there being one, two or three alternative 
segments are handled separsfHy by the three productions. (This can be considered a 
representational weakness of HSP. An HSU KS can encode this much more concisely since 
it can handle an arbitrary number of alternalives with a single procedure). The 
pdrameterless condition procedures VPRB.OS and VPRB.Sl, 2 and 3 are used just to save 
spaco. Note the complex arithmetic expressions within the actions to compute the combined 
vowel probabilities based on Kach alternative segment's vowel probabilities and normalized 
rating. 

VPRB.OS : ( < MOD 8S [ =NRAT OR =AVPRB OR =IVPRB OR =UVPRB ] > 
8S= < HYP SEG 0SEGLNK/80S > ) 

VPRB.Sl : ( 8S1= < AVPRD/8AVP1 IVPRE/8IVP1 UVPRB/8UVP1 NRAT/8NR1 > ) 
VPRB.S2 l ( 8S2= < AVPRB/8AVP2 IVPRB/8IVP2 UVPRB/8UVP2 NRAT/8NR2 > ) 
VPRB.S3 : ( 8S3= < AVPRB/8AVP3 IVPRB/8IVP3 UVPRB/8UVP3 NRAT/8NR3 > ) 

PD.CVPRBl i ( 

PD.CVPRB2 « ( 

PD.CVPRB3 

MOD 
MOD 
MOO 
s < 

< MOD SOS 
< MOD 80S 
< MOD 80S 

AVPRB 
IVPRB 
UVPRB 

VPRB.OS 
80S= < SEGS/(8S1) > 
VPRB.Sl 

-> 

< HOD 80S AVPRB 8AVP1 
< MOD 80S IVPRB 81VP1 
< MOD 80S UVPRB 8UVP1 

VPRB.OS 
80S= < SEGS/(8S1 8S2) > 
VPRB.Sl 
VPRB.S2 

-> 

80S AVPRB [ [ 
80S IVPRB [ [ 
80S UVPRB [ [ 

VPRB.OS 
80S= < SEGS/(8S1 
VPRB.Sl 
VPHB.S2 
V';

JRBaS3 
-> 

[ [ [8AVP1*8NR1] 
[ [ [8IVP1*8NR1] 
[ [ [8UVP1A8NR1] 
) 

[8AVP1*8NR11 + 
t3IVPl*8NRl] + 
[8UVP1*8NR1]  + 

[8AVP2*8NR2] 
[81VP2*8NR2] 
[8UVP2*8NR21 

]/100 
]/100 
1/100 

> 
> 

>) 

8S2 SS3) > 

+ [8AVP2*8NR23 + 
+ [8IVP2*8NR2] + 
+ [?UVP2*8NR2]  + 

[8AVP3*8NR3] 
[8IVP3*8NR3] 
[8UVP3A8NR3] 

1/100 1 > 
1/100 ] > 
1/100 1   > 
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Below there are three prodcriions (PD.GAP, PD.GAPL and PD.GAPR) which propagate 
oegment "gaps" (missing segments represented as segment hyps with identity "-*) up 
through the syllable and word levels (as "GAP" hyps at those levels). The three 
productions trigger when the option-seg hyp for a segment gap appears in Working 
Memory. The condition procedure NEHGAP merely tests for such a situation and sets up the 
context into some variables. 

For the interior of an utterance, PD.GAP applies, under condition that the gap must be 
at least 15 time units long. PD.GAPL and PD.GAPR permit a gap shorter than 15 to be 
propagated if it abuts the utterance-begin segment ("[") or utterance-end segment ("]"/. 
Note that PD.GAPL and PD.GAPR must ensure that the segment is indeed shorter than 15, 
else there might be a duplicate firing of one of them and PD.GAP. This is an example of 
extra encoding that is necessary to prevent duplicate firings in the absence of a conflict 
resolution mechanism in the architecture. 

NEWGAP   :   ( ■<  NEW 8QS > 
80S=  < HYP OSEG SEGSAJS)  > 
8S=  <  HYP SEG "-"  BTIME/(8BT *)  ETIME/(8ET *) 

NEWGAPS:   (  ->  < NEW 8M= < HYP SYL  "GAP"  BTIHE/(8BT 3)  ETIHE/(«ET 3)  >  > 
< NEW < LNK OSEG UHYP/8M LHYPS/(80S)  UI HP/100 > > 
< NEW 8W= <HYP WRD "GAP" BTIME/(8BT 3)  ETIHE/OET 3) 

IVLD/100 SYLNUM/1 > >    • 
< NEW < LNK SYL UHYP/8W LHYPS/(8H)  UIHP/IOO >  >    ) 

PD.GAP  :   ( NEWGAP 
8S=  <  ETIMEA [  > 8BT+15]  *)  > 

-> 
NEWGAPS ) 

NEWGAP.E  J   < 

PD.GAPL  i   ( 

PD.GAPR  I   < 

NEWGAP 
8S= < ETIMEA [  NOT > 8BU15]  *) >    ) 

NEWGAP.E 
< HYP SEG "I"  ETIMEA8BT *)  > 
NOT < HYP WRD "GAP"  BTIMEA8BT *)  ETIHEA8ET *)  > 

-> 

NEWGAPS ) 
NEWGAP.E 
< HYP SEG  "]"  BTIMEA8ET *)  > 
NOT < HYP WRD "GAP" BTIMEA8BT *)  ETIHEA8ET *)  > 

-> 
NEWGAPS    ) 

■ 

P" —- _ 
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The productions below cooperate to identify those option-segs which have high 
enough combined vowel probabilities to act as syllable "nuclei". There are two cla&sss of 
nuclei (NUCs): strong and weak; and those option-segs that are neither must be Wisr^d 
accordingly (for later reference). This happens in three consecutive PS cycles: 

First, PD.SNUC will mark as NUC/STRONG an option-seg that satisfitJ the stror : 
criteria (vowel probability greater than .3 and existence of an amplitude maximum, or MXixJ 
hyp, which overlaps the option-seg). At the same time (i.e., also in the first cycled, 
PD.FSNUC initiates an explicit 1-cycle delay by creating a special WM element <P0M 
FSNUC option-seg> which will cause triggering on the following cycle. (Note this el«»- tnt 
also records the relevant option-seg hyp). 

On the following cycle, PD.WNUC reacts to the special element and tests whethe te 
option-seg was marked STRONG on the previous cycle. If not, and if it satisfies the ak 
criteria, it  is marked as NUC/WEAK. In t. e meantime, PD.FWNUC creates another   1- :le 
delay with,the element <P0M FWNUC option-seg>. 

On the third cycle, PD.NONUC reacts to the new <P0M F»MJC optIon-seg> element 
and tests whether the option segment has been marked as either STRONG or WEAK, and if 
not marks it as NONUC/TRUE. 

PD.FNUC, is the cleanup production. It deletes both kinds of special delay eürments in 
the cycle after which they were created. 

PD.ANUCL a^d PD.ANUCR monitor an "error" condition; namely the appearance of two 
contiguous (in ime) NUCs. Their actions (encoded in the procedure ANUC.AOS) are actually 
L* code (the underlying implementation language) which prints a diagnostic message. This 
should be considered an expedient rather tha.r» part of the HSP architecture. 

PD.SNUC  I   ( < MOD 80S VPRB > 
80S= < HYP OSEG VPRB/[  > 30 ]  BTIME/CSBT 0) 

ETIME/(«ET 0)  > 
< HYP Mi BTIHE/([  < SET]  0) ETIME/([  > »BT]  0) > 

-> 

< MOD SOS NUC STRONG >    ) 

PD.FSNUC J ( < MOD SOS VPRB > 
S0S= < HYP OSEG > 

-> 

< MEN < POM FSNUC 80S > > ) 

PD.WNUC » ( < NEW $X > 
SX= < POM FSNUC 80S > 
NOT S0S= < NUC/* > 
80S= < VPRB/[ =8VP AND > 101 BTIME/CSBT 0) 
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ETIMEA  [   =8ET AND >  8BT+12]   0)  > 
NOT < HYP OSEG ETIME/(5BT 0)   VPRB/[   NOT <  8VP]   > 
NOT < HYP OSEG BTIME/(8ET 0)  YPRB/t   NOT <  8YP]   > 
NOT < HYP OSEG ETIME/(8BT 0)  NUCA > 
NrJT < HYP OSEG BTIME/(8ET 0)  NUC/* > 

-> 
< MOD 80S NUC M1AK >  ) 

f 

PD.FWNUC J < < NEW 8X > 
8X= < POM FSNUC 80S > 

-> 

< NrW < POM FWNUC 80S > > ) 

PD.NONÜC : ( < NEW 8X > 
8X= < POM FWNUC 80S > 
NOT 80S= < NUCA > 

-> 

< MOD 80S NONUC TRUE > ) 

PD.FNUC. : ( 

ANUC.OS : ( 

ANUC.AOS i ( 

< NEW 8X > 
8X= < POM [ =FSNUC OR =FWNUC ] > 

-> 

< DEL 8X > ) 

< MOD 80S NUC [   =STRONG OR =WEAK]  > 
80S= < HYP OSEG BTIME/<8BT 0)  ETIMEASET 0)  >    ) 

$AOS= < NUC/I   =STR0NG OR =WEAK]  > 
-> 

S-Adj  NUCsi   "  WRHSP 80S PRHSP« SPACE2 8AOS PRHSP ) 

PD.ANUCL  i   ( ANUC.OS 
8A0S= < HYP OSEG ETIME/(8BT *)  > 
ANUC.AOS    ) 

'• 

PD.ANUCR  i   ( ANUC.OS 
8A0S= < HYP OSEG BTIME/(8ET *) > 
ANUC.AOS    ) 


